Efficient algorithm for computing exact partition functions of lattice polymer models

被引:12
|
作者
Hsieh, Yu-Hsin [1 ]
Chen, Chi-Ning [2 ]
Hu, Chin-Kun [3 ,4 ,5 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Natl Dong Hua Univ, Dept Phys, Hualien 97401, Taiwan
[3] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[4] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Hsinchu 30013, Taiwan
[5] Univ Shanghai Sci & Technol, Sch Business, Shanghai 200093, Peoples R China
关键词
Lattice polymer; Exact enumeration; Interacting self-avoiding walk; Complex polymer system; SELF-AVOIDING WALKS; EXACT ENUMERATION; SQUARE LATTICE; DIMENSIONS; MONTE-CARLO; THETA-POINT; FUNCTION ZEROS; PROTEINS; TRANSITION; SEQUENCE;
D O I
10.1016/j.cpc.2016.08.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Polymers are important macromolecules in many physical, chemical, biological and industrial problems. Studies on simple lattice polymer models are very helpful for understanding behaviors of polymers. We develop an efficient algorithm for computing exact partition functions of lattice polymer models, and we use this algorithm and personal computers to obtain exact partition functions of the interacting self avoiding walks with N monomers on the simple cubic lattice up to N = 28 and on the square lattice up to N = 40. Our algorithm can be extended to study other lattice polymer models, such as the HP model for Protein folding and the charged HP model for protein aggregation. It also provides references for checking accuracy of numerical partition functions obtained by simulations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 50 条
  • [1] Transfer matrix algorithm for computing the exact partition function of a square lattice polymer
    Lee, Julian
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 228 : 11 - 21
  • [2] Parallel algorithm for calculation of the exact partition function of a lattice polymer
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Lee, Julian
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) : 1027 - 1033
  • [3] Exact partition functions of a polymer on a square lattice up to chain length 38
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Lee, Julian
    24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012), 2013, 454
  • [4] EXACT PARTITION-FUNCTIONS OF INTERACTING LATTICE FERMIONS
    GRANDATI, Y
    BERARD, A
    GRANGE, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (03) : 1082 - 1089
  • [5] Exact solutions of lattice polymer models
    R. Brak
    A. L. Owczarek
    A. Rechnitzer
    Journal of Mathematical Chemistry, 2009, 45 : 39 - 57
  • [6] Exact solutions of lattice polymer models
    Brak, R.
    Owczarek, A. L.
    Rechnitzer, A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 45 (01) : 39 - 57
  • [7] Exact partition function zeros of a polymer on a simple cubic lattice
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Lee, Julian
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [8] Exact potts model partition functions for strips of the honeycomb lattice
    Chang, Shu-Chiuan
    Shrock, Robert
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 1011 - 1024
  • [9] Exact Potts model partition functions for strips of the triangular lattice
    Chang, SC
    Jacobsen, JL
    Salas, J
    Shrock, R
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (3-4) : 763 - 823
  • [10] Exact partition functions for Potts antiferromagnets on cyclic lattice strips
    Shrock, R
    Tsai, SH
    PHYSICA A, 2000, 275 (3-4): : 429 - 449