Leveraging Shape Completion for 3D Siamese Tracking

被引:106
作者
Giancola, Silvio [1 ]
Zarzar, Jesus [1 ]
Ghanem, Bernard [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point clouds are challenging to process due to their sparsity, therefore autonomous vehicles rely more on appearance attributes than pure geometric features. However, 3D LIDAR perception can provide crucial information for urban navigation in challenging light or weather conditions. In this paper, we investigate the versatility of Shape Completion for 3D Object Tracking in LIDAR point clouds. We design a Siamese tracker that encodes model and candidate shapes into a compact latent representation. We regularize the encoding by enforcing the latent representation to decode into an object model shape. We observe that 3D object tracking and 3D shape completion complement each other. Learning a more meaningful latent representation shows better discriminatory capabilities, leading to improved tracking performance. We test our method on the KITTI Tracking set using car 3D bounding boxes. Our model reaches a 76.94% Success rate and 81.38% Precision for 3D Object Tracking, with the shape completion regularization leading to an improvement of 3% in both metrics.
引用
收藏
页码:1359 / 1368
页数:10
相关论文
共 65 条
  • [1] Achlioptas P, 2018, PR MACH LEARN RES, V80
  • [2] [Anonymous], 2017, IEEE P COMPUT VIS PA, DOI DOI 10.1109/CVPR.2017.16
  • [3] [Anonymous], 2015, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2015.7298610
  • [4] [Anonymous], 2017, Frustum pointnets for 3d object detection from rgb-d data
  • [5] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [6] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [7] 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration
    Bibi, Adel
    Zhang, Tianzhu
    Ghanem, Bernard
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1439 - 1448
  • [8] Pointwise Convolutional Neural Networks
    Binh-Son Hua
    Minh-Khoi Tran
    Yeung, Sai-Kit
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 984 - 993
  • [9] Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
  • [10] Caltagirone L., 2018, ARXIV180907941