Modeling the linear drag on falling balls via interactive fuzzy initial value problem

被引:1
|
作者
Salgado, Silvio Antonio Bueno [1 ]
Rojas, Onofre [2 ]
de Souza, Sergio Martins [2 ]
Pires, Danilo Machado [1 ]
Ferreira, Leandro [1 ]
机构
[1] Univ Fed Alfenas, Inst Appl Social Sci, Varginha, MG, Brazil
[2] Univ Fed Lavras, Phys Dept, Lavras, MG, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 01期
关键词
Drag on spheres in resistive medium; Fuzzy differential equation; Interactivity; Fuzzy Laplace transform; DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s40314-021-01736-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the linear drag of a falling ball, which can be well described using an interactive fuzzy initial value problem. The solution of the interactive fuzzy initial value problem gives us two types of solutions. One solution is when the uncertainty increases as time evolves, that is to say when the diameter of the fuzzy velocity increases exponentially. Hence, we ignore this solution, because we cannot expect this type of behavior for a ball that drags on a specific fluid. After all, experimentally, the ball must reach a well-known terminal velocity. The other branch of solution behaves as expected, the time-dependent fuzzy velocity converges to a well-known terminal velocity; meaning that, the diameter of the fuzzy velocity converges to terminal velocity. Therefore, we explore several conditions of fuzzy initial velocity and conclude that, for any fuzzy initial velocity, the fuzzy terminal velocity always converges to the classical terminal velocity, which is well known in the literature. We also present the corresponding time-dependent fuzzy acceleration, which becomes null for a sufficiently long time.
引用
收藏
页数:17
相关论文
共 31 条
  • [1] Modeling the linear drag on falling balls via interactive fuzzy initial value problem
    Silvio Antonio Bueno Salgado
    Onofre Rojas
    Sérgio Martins de Souza
    Danilo Machado Pires
    Leandro Ferreira
    Computational and Applied Mathematics, 2022, 41
  • [2] Solving interactive fuzzy initial value problem via fuzzy Laplace transform
    Salgado, Silvio Antonio Bueno
    Esmi, Estevao
    Sanchez, Daniel Eduardo
    de Barros, Laecio Carvalho
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [3] Solving interactive fuzzy initial value problem via fuzzy Laplace transform
    Silvio Antonio Bueno Salgado
    Estevão Esmi
    Daniel Eduardo Sánchez
    Laécio Carvalho de Barros
    Computational and Applied Mathematics, 2021, 40
  • [4] On the stability for the fuzzy initial value problem
    Ngo Van Hoa
    Allahviranloo, Tofigh
    Ho Vu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7747 - 7755
  • [5] A new approach to fuzzy initial value problem
    Gasilov, N. A.
    Fatullayev, A. G.
    Amrahov, S. E.
    Khastan, A.
    SOFT COMPUTING, 2014, 18 (02) : 217 - 225
  • [6] Approximate Solution for Fourth Order Linear Fuzzy Initial Value Problem
    Jameel, A. F.
    Ismail, A. I. Md.
    Ghoreishi, M.
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 302 - 308
  • [7] Fuzzy fractional initial value problem
    Prakash, P.
    Nieto, J. J.
    Senthilvelavan, S.
    Priya, G. Sudha
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (06) : 2691 - 2704
  • [8] Fuzzy initial value problem for Nth-order linear differential equations
    Buckley, JJ
    Feuring, T
    FUZZY SETS AND SYSTEMS, 2001, 121 (02) : 247 - 255
  • [9] Fuzzy Initial Value Problem: A Short Survey
    Mizukoshi, Marina Tuyako
    FUZZY INFORMATION PROCESSING, NAFIPS 2018, 2018, 831 : 464 - 476
  • [10] Numerical Solution for Fuzzy Initial Value Problems via Interactive Arithmetic: Application to Chemical Reactions
    Wasques, Vinicius F.
    Esmi, Estevao
    Barros, Laecio C.
    Sussner, Peter
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2020, 13 (01) : 1517 - 1529