Testing the constant-temperature approach for the nuclear level density

被引:18
|
作者
Dinh Dang, N. [1 ,2 ]
Quang Hung, N. [3 ]
Quynh Huong, L. T. [3 ,4 ]
机构
[1] RIKEN Nishina Ctr Accelerator Based Sci, Quantum Hadron Phys Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[2] Inst Nucl Sci & Tech, Hanoi, Vietnam
[3] Duy Tan Univ, Inst Fundamental & Appl Sci, 3 Quang Trung, Da Nang, Vietnam
[4] Viet Nam Natl Univ Ho Chi Minh City Univ Sci, Fac Phys & Engn Phys, Ho Chi Minh City, Vietnam
关键词
STATIC-PATH APPROXIMATION; SHELL-MODEL; FINITE-TEMPERATURE; EXCITED NUCLEI; ENHANCEMENT; MASSES; RATES;
D O I
10.1103/PhysRevC.96.054321
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The nuclear temperature is calculated from the derivative of the logarithm of the level densities in Ni60-62 and Yb170-172. The latter are obtained within a method, which includes exact pairing for the levels around the Fermi surface in combination with the independent particle model for the rest of the single-particle spectrum. It is found that the increase in this temperature is relatively slow up to the excitation energy E* = E*(f) so that, at 0 < E* <= E*(f), the level density can be described well by the constant-temperature model. The values of E*(f) are found to be 10 MeV for Yb170-172 and 20 MeV for Ni60-62, that is much higher than the particle separation threshold. Within this energy interval, the constant temperature is found to be around 0.5 MeV for Yb170-172, whereas for Ni60-62 it can be any value between 1.3 and 1.5 MeV, in excellent agreement with the recent experimental finding. It is also shown that pairing plays an important role in maintaining this constant temperature at low excitation energy.
引用
收藏
页数:10
相关论文
共 29 条
  • [1] Constant temperature model for nuclear level density
    Zelevinsky, Vladimir
    Karampagia, Sofia
    Berlaga, Alexander
    PHYSICS LETTERS B, 2018, 783 : 428 - 433
  • [2] Constant temperature description of the nuclear level densities
    Horoi, Mihai
    Dissanayake, Jayani
    FIFTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS, 2017, 1912
  • [3] Statistical Approach to Nuclear Level Density
    Sen'kov, R. A.
    Zelevinsky, V. G.
    Horoi, M.
    FOURTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS 2014, 2014, 1619
  • [4] NUCLEAR LEVEL DENSITY IN THE STATISTICAL SEMICLASSICAL MICRO-MACROSCOPIC APPROACH
    Magner, A. G.
    Sanzhur, A. I.
    Fedotkin, S. N.
    Levon, A. I.
    Grygoriev, U. V.
    Shlomo, S.
    NUCLEAR PHYSICS AND ATOMIC ENERGY, 2023, 24 (03) : 175 - 192
  • [5] Nuclear level density from relativistic density functional theory and combinatorial method
    Jiang, X. F.
    Wu, X. H.
    Zhao, P. W.
    Meng, J.
    PHYSICS LETTERS B, 2024, 849
  • [6] Effect of collectivity on the nuclear level density
    Roy, Pratap
    Banerjee, K.
    Gohil, M.
    Bhattacharya, C.
    Kundu, S.
    Rana, T. K.
    Ghosh, T. K.
    Mukherjee, G.
    Pandey, R.
    Pai, H.
    Srivastava, V.
    Meena, J. K.
    Banerjee, S. R.
    Mukhopadhyay, S.
    Pandit, D.
    Pal, S.
    Bhattacharya, S.
    PHYSICAL REVIEW C, 2013, 88 (03):
  • [7] Nuclear shell model and level density
    Karampagia, S.
    Zelevinsky, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2020, 29 (06):
  • [8] Simultaneous Microscopic Description of Nuclear Level Density and Radiative Strength Function
    Hung, N. Quang
    Dang, N. Dinh
    Huong, L. T. Quynh
    PHYSICAL REVIEW LETTERS, 2017, 118 (02)
  • [9] Combinatorial nuclear level-density model
    Uhrenholt, H.
    Aberg, S.
    Dobrowolski, A.
    Dossing, Th
    Ichikawa, T.
    Moeller, P.
    NUCLEAR PHYSICS A, 2013, 913 : 127 - 156
  • [10] Variation of nuclear level density with angular momentum
    Banerjee, K.
    Bhattacharya, S.
    Bhattacharya, C.
    Gohil, M.
    Kundu, S.
    Rana, T. K.
    Mukherjee, G.
    Pandey, R.
    Roy, P.
    Pai, H.
    Dey, A.
    Ghosh, T. K.
    Meena, J. K.
    Mukhopadhyay, S.
    Pandit, D.
    Pal, S.
    Banerjee, S. R.
    PHYSICAL REVIEW C, 2012, 85 (06):