Second Law Analysis for Variable Viscosity Hydromagnetic Boundary Layer Flow with Thermal Radiation and Newtonian Heating

被引:83
|
作者
Makinde, Oluwole Daniel [1 ]
机构
[1] Cape Peninsula Univ Technol, Inst Adv Res Math Modelling & Computat, ZA-7535 Bellville, South Africa
来源
ENTROPY | 2011年 / 13卷 / 08期
基金
新加坡国家研究基金会;
关键词
flat plate; variable viscosity; Newtonian heating; Thermal radiation; magnetic field; entropy generation rate; MOVING VERTICAL PLATE; MIXED CONVECTION; POROUS-MEDIUM; SURFACE; TEMPERATURE; CHANNEL;
D O I
10.3390/e13081446
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present paper is concerned with the analysis of inherent irreversibility in hydromagnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat plate under the influence of thermal radiation and Newtonian heating. Using local similarity solution technique and shooting quadrature, the velocity and temperature profiles are obtained numerically and utilized to compute the entropy generation number. The effects of magnetic field parameter, Brinkmann number, the Prandtl number, variable viscosity parameter, radiation parameter and local Biot number on the fluid velocity profiles, temperature profiles, local skin friction and local Nusselt number are presented. The influences of the same parameters and the dimensionless group parameter on the entropy generation rate in the flow regime and Bejan number are calculated, depicted graphically and discussed quantitatively. It is observed that the peak of entropy generation rate is attained within the boundary layer region and plate surface act as a strong source of entropy generation and heat transfer irreversibility.
引用
收藏
页码:1446 / 1464
页数:19
相关论文
共 50 条
  • [1] Second Law Analysis of Boundary Layer Flow With Variable Fluid Properties
    Afridi, M. I.
    Qasim, M.
    Makinde, O. D.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (10):
  • [2] Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation
    Hayat, T.
    Shafiq, Anum
    Alsaedi, A.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2229 - 2240
  • [3] Dissipative Effects in Hydromagnetic Boundary Layer Nanofluid Flow past a Stretching Sheet with Newtonian Heating
    Mahatha, B. K.
    Nandkeolyar, R.
    Mahto, G. K.
    Sibanda, P.
    JOURNAL OF APPLIED FLUID MECHANICS, 2016, 9 (04) : 1977 - 1989
  • [4] Effect of variable viscosity on thermal boundary layer over a permeable flat plate with radiation and a convective surface boundary condition
    Makinde, Oluwole Daniel
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (05) : 1615 - 1622
  • [5] Boundary-Layer Flow of Walters'B Fluid with Newtonian Heating
    Hayat, Tasawar
    Shafiq, Anum
    Mustafa, Meraj
    Alsaedi, Ahmed
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (05): : 333 - 341
  • [6] Effect of thermal radiation on laminar boundary layer flow over a permeable flat plate with Newtonian heating
    Mohamed, Muhammad Khairul Anuar
    Salleh, Mohd Zuki
    Noar, Nor Aida Zuraimi Md
    Ishak, Anuar
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [7] Heat and mass transfer analysis in unsteady boundary layer flow through porous media with variable viscosity and thermal diffusivity
    Husnain, S.
    Mehmood, A.
    Ali, A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2012, 53 (05) : 722 - 732
  • [8] Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating
    Salleh, M. Z.
    Nazar, R.
    Pop, I.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2010, 41 (06) : 651 - 655
  • [9] Modeling of Free Convection Boundary Layer Flow on a Solid Sphere with Newtonian Heating
    Salleh, M. Z.
    Nazar, R.
    Pop, I.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (03) : 263 - 274
  • [10] MHD Boundary Layer Flow of Non-Newtonian Power-Law Nanofluid with Thermal Radiation
    Kavitha, P.
    Naikoti, Kishan
    JOURNAL OF NANOFLUIDS, 2019, 8 (01) : 84 - 93