Self-Powered Extensible S-SSHI Based on RC Differential Circuit for Piezoelectric Energy Harvesting

被引:4
|
作者
Qi, Yuyao [1 ]
Xia, Yinshui [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
来源
2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022) | 2022年
关键词
energy harvesting; piezoelectric transducer; S-SSHI; extensible; RC differential circuit; RECTIFIER;
D O I
10.1109/MELECON53508.2022.9842926
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
At present, most piezoelectric energy harvesting (PEH) interface circuits are non-extensible only a single piezoelectric transducer (PZT) can be used or extensible at the expense of power consumption, component cost and volume. However, at a lower cost, the simultaneous energy harvesting by multiple PZTs under the same vibration source can more effectively increase the electrical energy supplied to the load. Hence, a self-powered extensible serial synchronized switch harvesting on inductor interface circuit based on RC differential circuit (SPEDS-SSHI) for piezoelectric energy harvesting is proposed in this article. It is implemented by reducing the number of switches required for the single piezoelectric unit and improving the reuse of components. The theoretical simulation demonstrates the effectiveness of the proposed circuit. The results show that the SPEDS-SSHI circuit can simultaneously harvest energy from multiple PZTs with any phase difference. The maximum harvested power of the proposed circuit for single PZT is 4.6 times that of the SEH circuit.
引用
收藏
页码:996 / 1001
页数:6
相关论文
共 50 条
  • [21] Design and Application of a Self-Powered Dual-Stage Circuit for Piezoelectric Energy Harvesting Systems
    Edla, Mahesh
    Lim, Yee Yan
    Padilla, Ricardo Vasquez
    Mikio, Deguchi
    IEEE ACCESS, 2021, 9 : 86954 - 86965
  • [22] A Self-Powered Dual-Stage Boost Converter Circuit for Piezoelectric Energy Harvesting Systems
    Haseeb, Abdul
    Edla, Mahesh
    Thabet, Ahmed Mostafa
    Deguchi, Mikio
    Kamran, Muhammad
    ENERGIES, 2023, 16 (05)
  • [23] Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor
    Ng, TH
    Liao, WH
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (10) : 785 - 797
  • [24] A Self-Powered Rectifier-Less Synchronized Switch Harvesting on Inductor Interface Circuit for Piezoelectric Energy Harvesting
    Wang, Xiudeng
    Xia, Yinshui
    Shi, Ge
    Xia, Huakang
    Chen, Zhidong
    Ye, Yidie
    Zhu, Zhangming
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (08) : 9149 - 9159
  • [25] A self-powered H-Bridge joule theory circuit for piezoelectric energy harvesting systems
    Edla M.
    Deguchi M.
    Lim Y.Y.
    Power Electronic Devices and Components, 2022, 3
  • [26] Self-Powered Single-Inductor Rectifier-Less SSHI Array Interface With the MPPT Technique for Piezoelectric Energy Harvesting
    Long, Zhihe
    Li, Pengyu
    Chen, Jun
    Chung, Henry
    Yang, Zhengbao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (10) : 10172 - 10181
  • [27] A self-powered interface circuit for piezoelectric and photovoltaic energy extracting
    Qian, Kefang
    Xia, Huakang
    Xia, Yinshui
    MICROELECTRONICS JOURNAL, 2024, 154
  • [28] A Self-Powered Synchronous Switch Energy Extraction Circuit for Electromagnetic Energy Harvesting Enhancement
    Xie, Zhiwu
    Teng, Li
    Wang, Haoyu
    Liu, Yu
    Fu, Minfan
    Liang, Junrui
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (08) : 9972 - 9982
  • [29] Switching Delay in Self-Powered Nonlinear Piezoelectric Vibration Energy Harvesting Circuit: Mechanisms, Effects, and Solutions
    Chen, Zhongsheng
    He, Jing
    Liu, Jianhua
    Xiong, Yeping
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (03) : 2427 - 2440
  • [30] An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems
    Shi, Ge
    Xia, Yinshui
    Ye, Yidie
    Qian, Libo
    Li, Qing
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (16) : 2160 - 2178