Symplectic groupoids for cluster manifolds

被引:4
|
作者
Li, Songhao [1 ]
Rupel, Dylan [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Math Acad, Pasadena Unified Sch Dist, Pasadena, CA 91101 USA
关键词
Symplectic groupoid; Cluster algebra; Hamiltonian dynamics; Poisson spray; DOUBLE BRUHAT CELLS; CLASSICAL PSEUDOGROUPS; ALGEBRAS; QUANTUM; QUANTIZATION; INTEGRABILITY; INTEGRATION;
D O I
10.1016/j.geomphys.2020.103688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct symplectic groupoids integrating log-canonical Poisson structures on cluster varieties of type A and X over both the real and complex numbers. Extensions of these groupoids to the completions of the cluster varieties where cluster variables are allowed to vanish are also considered. In the real case, we construct source-simply-connected groupoids for the cluster charts via the Poisson spray technique of Crainic and Mdrcut. The resulting groupoid structures are also valid in the complex case. These groupoid charts, and their analogues for the symplectic double and blow-up groupoids, are glued by lifting the cluster mutations to groupoid comorphisms whose formulas are motivated by the Hamiltonian perspective of cluster mutations introduced by Fock and Goncharov. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] SYMPLECTIC GROUPOIDS OF REDUCED POISSON SPACES
    XU, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 457 - 461
  • [22] Constant symplectic 2-groupoids
    Rajan Amit Mehta
    Xiang Tang
    Letters in Mathematical Physics, 2018, 108 : 1203 - 1223
  • [23] Constant symplectic 2-groupoids
    Mehta, Rajan Amit
    Tang, Xiang
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (05) : 1203 - 1223
  • [24] DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS
    Lu, Jiang-Hua
    Mouquin, Victor
    TRANSFORMATION GROUPS, 2018, 23 (03) : 765 - 800
  • [25] JACOBI MANIFOLDS AND CONTACT GROUPOIDS
    KERBRAT, Y
    SOUICIBENHAMMADI, Z
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (01): : 81 - 86
  • [26] Tangential deformation quantization and polarized symplectic groupoids
    Weinstein, A
    DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 301 - 314
  • [27] Symplectic groupoids and discrete constrained Lagrangian mechanics
    Carlos Marrero, Juan
    Martin de Diego, David
    Stern, Ari
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 367 - 397
  • [28] Transitive Courant Algebroids and Double Symplectic Groupoids
    Alvarez, Daniel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (09) : 7526 - 7551
  • [29] Gauge equivalence of Dirac structures and symplectic groupoids
    Bursztyn, H
    Radko, O
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (01) : 309 - +
  • [30] SIGNATURE OF SYMPLECTIC MANIFOLDS
    JONES, LP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 240 (JUN) : 253 - 262