Global existence and blow-up for Riccati equation

被引:0
|
作者
Zhang, WN [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2003年 / 12卷 / 3-4期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the standard form of a Riccati equation and try to know when it possesses global solutions and when it blows up by discussing zeros of solutions and oscillation of solutions for an auxiliary equation. Our theorems are also applied to the concrete equation in [J.C.Kegley, SIAM J.Math.Anal. 14(1983) 47-59], for which a stronger result of global solutions is given.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [1] Global existence and blow-up for a weakly dissipative μDP equation
    Kohlmann, Martin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) : 4746 - 4753
  • [2] Global Existence and Blow-up of Solutions for A Porous Medium Equation
    Gao, Yunzhu
    Meng, Xi
    Gai, Hong
    ADVANCED BUILDING MATERIALS AND STRUCTURAL ENGINEERING, 2012, 461 : 532 - 536
  • [3] Global existence and blow-up phenomena for a nonlinear wave equation
    Hao, Jianghao
    Zhang, Yajing
    Li, Shengjia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4823 - 4832
  • [4] Blow-up and global existence for a kinetic equation of swarm formation
    Lachowicz, Miroslaw
    Leszczynski, Henryk
    Parisot, Martin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (06): : 1153 - 1175
  • [5] Global existence and blow-up for a nonlinear porous medium equation
    Li, FC
    Xie, CH
    APPLIED MATHEMATICS LETTERS, 2003, 16 (02) : 185 - 192
  • [7] Global Existence and Blow-Up Results for a Classical Semilinear Parabolic Equation
    Li MA
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (04) : 587 - 592
  • [8] ON GLOBAL EXISTENCE AND BLOW-UP FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION
    Cui, Jianbo
    Hong, Jialin
    Sun, Liying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6837 - 6854
  • [9] OPTIMAL CONDITIONS OF GLOBAL EXISTENCE AND BLOW-UP FOR A NONLINEAR PARABOLIC EQUATION
    Jiang, Yi
    Luo, Chuan
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 872 - 880
  • [10] Global existence and blow-up results for a classical semilinear parabolic equation
    Ma, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (04) : 587 - 592