Recent Advances in Liquid Organic Hydrogen Carriers: An AlcoholBased Hydrogen Economy

被引:66
|
作者
Yadav, Vinita [1 ,2 ]
Sivakumar, Ganesan [3 ]
Gupta, Virendrakumar [4 ]
Balaraman, Ekambaram [2 ,3 ]
机构
[1] CSIR Natl Chem Lab CSIR NCL, Organ Chem Div, Pune 411008, Maharashtra, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Indian Inst Sci Educ & Res IISER Tirupati, Dept Chem, Tirupati 517507, Andhra Pradesh, India
[4] Reliance Ind Ltd, Reliance Res & Dev Ctr, Polymer Synth & Catalysis, Navi Mumbai 400701, India
关键词
alcohol; acceptorless dehydrogenation; dehydrogenative coupling; homogeneous catalysis; hydrogen; hydrogenation; LOHCs; REVERSIBLE DEHYDROGENATION-HYDROGENATION; HOMOGENEOUS RUTHENIUM; METHYL ACETATE; METHANOL; EFFICIENT; STORAGE; SYSTEM; FUTURE; GENERATION; COMPLEXES;
D O I
10.1021/acscatal.1c03283
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy storage and the use of abundantly available feedstock without contributing to the carbon footprint are two significant global challenges. In this regard, the development of high- performance, low-cost, sustainable, and environmentally friendly energy storage and production systems is crucial to fulfill the growing energy demands of the current society. The use of hydrogen will diversify energy sources as it significantly reduces greenhouse gas emissions and environmental pollution during energy conversion. Although the hydrogen economy is quite beneficial, hydrogen storage is still very challenging, and the existing methods suffer from a lot of problems and drawbacks. The conventional liquefaction and compression hydrogen storage technologies are associated with several challenges, including low storage density, boil-off losses, relatively high costs, and safety and transportation concerns. In recent years, liquid organic hydrogen carrier (LOHC) systems have attained a lot of importance as a substitute for the traditional storage methods. Hydrogen storage and transport using LOHCs are based on two-step cycles, such as (i) loading/storage of hydrogen by catalytic hydrogenation of H-2-lean compounds and (ii) unloading/releasing hydrogen by dehydrogenating the resulting H-2-rich liquids. Since alcohols are widely accessible from various industrial processes or even from biomass-derived precursors, the catalytic acceptorless dehydrogenation of alcohols is an attractive approach for future hydrogen storage applications. Hence, the catalytic dehydrogenation-hydrogenation of alcohols can be used for the development of alcoholbased LOHC systems which are economical, safe, and easy to handle. Further, they are similar to crude oils under ambient conditions and thus are suitable for use in the current energy infrastructure. This Review covers several essential aspects of these developing efficient and abundantly available LOHC systems for efficient hydrogen storage and transport applications. Additionally, reversible LOHC systems based on the catalytic dehydrogenation-hydrogenation of alcohols and their corresponding carbonyl compounds have been discussed.
引用
收藏
页码:14712 / 14726
页数:15
相关论文
共 50 条
  • [41] Recent advances in the production of γ -valerolactone with liquid hydrogen source
    Zhou, Yangyuan
    Wang, Li
    Guo, Pengfei
    Yao, Guodong
    2020 5TH INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, ENERGY TECHNOLOGY AND ENVIRONMENTAL ENGINEERING, 2020, 571
  • [42] Advancements in the development of liquid organic hydrogen carrier systems and their applications in the hydrogen economy
    Munyentwali, Alexis
    Tan, Khai Chen
    He, Teng
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2024, 34 (05) : 825 - 839
  • [43] Advancements in the development of liquid organic hydrogen carrier systems and their applications in the hydrogen economy
    Alexis Munyentwali
    Khai Chen Tan
    Teng He
    Progress in Natural Science:Materials International, 2024, 34 (05) : 825 - 839
  • [44] Electrochemical Cycling of Liquid Organic Hydrogen Carriers as a Sustainable Approach for Hydrogen Storage and Transportation
    Chilunda, Moses D.
    Talipov, Sarvarjon A.
    Farooq, Hafiz M. Umar
    Biddinger, Elizabeth J.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (03): : 1174 - 1195
  • [45] Unveiling the Potential of Heterogeneous Systems for Reversible Hydrogen Storage in Liquid Organic Hydrogen Carriers
    Jangir, Jyothi
    Jagirdar, Balaji R.
    CHEMSUSCHEM, 2025, 18 (05)
  • [46] Thermochemical properties of pyrazine derivatives as seminal liquid organic hydrogen carriers for hydrogen storage
    Verevkin, Sergey P.
    Nagrimanov, Ruslan N.
    Zaitsau, Dzmitry H.
    Konnova, Maria E.
    Pimerzin, Aleksey A.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2021, 158
  • [47] Large-scale stationary hydrogen storage via liquid organic hydrogen carriers
    Abdin, Zainul
    Tang, Chunguang
    Liu, Yun
    Catchpole, Kylie
    ISCIENCE, 2021, 24 (09)
  • [48] Catalytic hydrogen storage in liquid hydrogen carriers
    Ni, Yuwen
    Han, Zhe
    Chai, Yuchao
    Wu, Guangjun
    Li, Landong
    EES CATALYSIS, 2023, 1 (04): : 459 - 494
  • [49] Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking
    Andersson, Joakim
    ENERGIES, 2021, 14 (05)
  • [50] Liquid Organic Hydrogen Carriers: Hydrogenation Thermodynamics of Aromatic Esters
    Verevkin, Sergey P.
    Samarov, Artemiy A.
    Vostrikov, Sergey V.
    Rakhmanin, Oleg S.
    HYDROGEN, 2024, 5 (03): : 644 - 668