New rectangular plate elements based on twist-Kirchhoff theory

被引:11
作者
Brezzi, F. [3 ,4 ]
Evans, J. A. [1 ]
Hughes, T. J. R. [1 ]
Marini, L. D. [2 ,4 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[3] Ist Univ Studi Super, I-27100 Pavia, Italy
[4] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
基金
美国国家科学基金会;
关键词
Plates; Finite elements; One-point quadrature; Twist-Kirchhoff theory; FINITE-ELEMENT; ISOGEOMETRIC ANALYSIS; SHELLS;
D O I
10.1016/j.cma.2011.04.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a new framework for the development of thin plate finite elements, the "twist-Kirchhoff theory". A family of rectangular plate elements is derived that takes advantage of the special structure of this new theory. Particular attention is focused on the lowest-order member of the family, an eight degree-of-freedom, four-node element with mid-side rotations whose stiffness matrix is exactly computed with one-point Gaussian quadrature. We prove a convergence theorem for it and various error estimates. These are also generalized to the higher-order elements in the family. Numerical tests corroborate the theoretical results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2547 / 2561
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 2006, MATH MOD METH APPL S
[2]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[3]   The MITC9 shell element in plate bending: mathematical analysis of a simplified case [J].
Bathe, Klaus-Juergen ;
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTATIONAL MECHANICS, 2011, 47 (06) :617-626
[4]  
Bell K., 1969, International Journal for Numerical Methods in Engineering, V1, P101, DOI 10.1002/nme.1620010108
[5]   EXPLICIT ALGORITHMS FOR THE NONLINEAR DYNAMICS OF SHELLS [J].
BELYTSCHKO, T ;
LIN, JI ;
TSAY, CS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (02) :225-251
[6]   A STABILIZATION PROCEDURE FOR THE QUADRILATERAL PLATE ELEMENT WITH ONE-POINT QUADRATURE [J].
BELYTSCHKO, T ;
TSAY, CS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (03) :405-419
[7]  
Brezzi F., 1991, Mathematical Models & Methods in Applied Sciences, V1, P125, DOI 10.1142/S0218202591000083
[8]   MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES [J].
BREZZI, F ;
BATHE, KJ ;
FORTIN, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (08) :1787-1801
[9]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[10]   IsoGeometric Analysis: Stable elements for the 2D Stokes equation [J].
Buffa, A. ;
de Falco, C. ;
Sangalli, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) :1407-1422