Feature selection of support vector regression for Quantitative Structure-Activity Relationships (QSAR)

被引:0
作者
Huang, L [1 ]
Lu, HM [1 ]
Dai, Y [1 ]
机构
[1] Univ Illinois, Dept Bioengn MC063, Chicago, IL 60607 USA
来源
METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES | 2003年
关键词
QSAR; support vector regression; feature selection; grid search; linear programs;
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Predicting the biological activity of a compound from its chemical structure is a fundamental problem in drug design. The Support Vector (SV) Machine regression is one of the powerful machine learning methods developed for this purpose in Quantitative Structure-Activity Relationships (QSAR) Analysis. A procedure based on linear programming is proposed for feature selection of SV regression. This new approach demonstrates favorable behavior in comparison with Partial Least Squares (PLS) regression method and a hybrid procedure of combining (1) genetic programming and (2) a neural network for several real compound data.
引用
收藏
页码:88 / 93
页数:6
相关论文
共 14 条
[1]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[2]   PLS regression methods [J].
Höskuldsson, Agnar .
Journal of Chemometrics, 1988, 2 (03) :211-228
[3]  
APPELL M, 2002, ANAL BINDING COCAINE
[4]  
Bradley P. S., 1998, INFORMS Journal on Computing, V10, P209, DOI 10.1287/ijoc.10.2.209
[5]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[6]  
DAI Y, 2002, P 2002 INT C MATH EN
[7]  
DEMIRIZ A, IN PRESS COMPUTING S
[8]  
Dunn III W. J., 1989, TETRAHEDRON COMPUT M, V2, P349, DOI DOI 10.1016/0898-5529(89)90004-3
[9]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[10]   APPLICATION OF GENETIC FUNCTION APPROXIMATION TO QUANTITATIVE STRUCTURE-ACTIVITY-RELATIONSHIPS AND QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS [J].
ROGERS, D ;
HOPFINGER, AJ .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (04) :854-866