Feature selection of support vector regression for Quantitative Structure-Activity Relationships (QSAR)

被引:0
作者
Huang, L [1 ]
Lu, HM [1 ]
Dai, Y [1 ]
机构
[1] Univ Illinois, Dept Bioengn MC063, Chicago, IL 60607 USA
来源
METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES | 2003年
关键词
QSAR; support vector regression; feature selection; grid search; linear programs;
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Predicting the biological activity of a compound from its chemical structure is a fundamental problem in drug design. The Support Vector (SV) Machine regression is one of the powerful machine learning methods developed for this purpose in Quantitative Structure-Activity Relationships (QSAR) Analysis. A procedure based on linear programming is proposed for feature selection of SV regression. This new approach demonstrates favorable behavior in comparison with Partial Least Squares (PLS) regression method and a hybrid procedure of combining (1) genetic programming and (2) a neural network for several real compound data.
引用
收藏
页码:88 / 93
页数:6
相关论文
共 14 条
  • [1] Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    Alon, U
    Barkai, N
    Notterman, DA
    Gish, K
    Ybarra, S
    Mack, D
    Levine, AJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) : 6745 - 6750
  • [2] PLS regression methods
    Höskuldsson, Agnar
    [J]. Journal of Chemometrics, 1988, 2 (03) : 211 - 228
  • [3] APPELL M, 2002, ANAL BINDING COCAINE
  • [4] Bradley P. S., 1998, INFORMS Journal on Computing, V10, P209, DOI 10.1287/ijoc.10.2.209
  • [5] Bagging predictors
    Breiman, L
    [J]. MACHINE LEARNING, 1996, 24 (02) : 123 - 140
  • [6] DAI Y, 2002, P 2002 INT C MATH EN
  • [7] DEMIRIZ A, IN PRESS COMPUTING S
  • [8] Dunn III W. J., 1989, TETRAHEDRON COMPUT M, V2, P349, DOI DOI 10.1016/0898-5529(89)90004-3
  • [9] Support vector machine classification and validation of cancer tissue samples using microarray expression data
    Furey, TS
    Cristianini, N
    Duffy, N
    Bednarski, DW
    Schummer, M
    Haussler, D
    [J]. BIOINFORMATICS, 2000, 16 (10) : 906 - 914
  • [10] APPLICATION OF GENETIC FUNCTION APPROXIMATION TO QUANTITATIVE STRUCTURE-ACTIVITY-RELATIONSHIPS AND QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS
    ROGERS, D
    HOPFINGER, AJ
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (04): : 854 - 866