DeepFeature: feature selection in nonimage data using convolutional neural network

被引:32
|
作者
Sharma, Alok [1 ,2 ]
Lysenko, Artem [3 ]
Boroevich, Keith A. [3 ]
Vans, Edwin [4 ,5 ]
Tsunoda, Tatsuhiko [1 ,6 ,7 ,8 ]
机构
[1] RIKEN, Yokohama, Kanagawa, Japan
[2] Griffith Univ, Gold Coast, Australia
[3] RIKEN, Lab Med Sci Math, Yokohama, Kanagawa, Japan
[4] Univ South Pacific, Suva, Fiji
[5] Fiji Natl Univ, Suva, Fiji
[6] Univ Tokyo UT, Sch Sci, Tokyo, Japan
[7] UT, Labs Med Sci Math, Tokyo, Japan
[8] Tokyo Med & Dent Univ, Tokyo, Japan
关键词
Feature selection; Non-image data; Convolutional neural network; Omics data; DeepInsight; EXPRESSION; CLASSIFICATION;
D O I
10.1093/bib/bbab297
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical tests. Among these methods, deep neural networks are currently among the most advanced approaches and, in particular, convolutional neural networks (CNNs) have been shown to perform excellently for a variety of difficult tasks. Despite that applications of this type of networks to high-dimensional omics data and, most importantly, meaningful interpretation of the results returned from such models in a biomedical context remains an open problem. Here we present, an approach applying a CNN to nonimage data for feature selection. Our pipeline, DeepFeature, can both successfully transform omics data into a form that is optimal for fitting a CNN model and can also return sets of the most important genes used internally for computing predictions. Within the framework, the Snowfall compression algorithm is introduced to enable more elements in the fixed pixel framework, and region accumulation and element decoder is developed to find elements or genes from the class activation maps. In comparative tests for cancer type prediction task, DeepFeature simultaneously achieved superior predictive performance and better ability to discover key pathways and biological processes meaningful for this context. Capabilities offered by the proposed framework can enable the effective use of powerful deep learning methods to facilitate the discovery of causal mechanisms in high-dimensional biomedical data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Visual Attribute Classification Using Feature Selection and Convolutional Neural Network
    Qian, Rongqiang
    Yue, Yong
    Coenen, Frans
    Zhang, Bailing
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 649 - 653
  • [2] Convolutional neural network feature maps selection based on LDA
    Rui, Ting
    Zou, Junhua
    Zhou, You
    Fei, Jianchao
    Yang, Chengsong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (09) : 10635 - 10649
  • [3] Convolutional Neural Network Simplification based on Feature Maps Selection
    Rui, Ting
    Zou, Junhua
    Zhou, You
    Fei, Jianchao
    Yang, Chengsong
    2016 IEEE 22ND INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2016, : 1207 - 1210
  • [4] Convolutional neural network feature maps selection based on LDA
    Ting Rui
    Junhua Zou
    You Zhou
    Jianchao Fei
    Chengsong Yang
    Multimedia Tools and Applications, 2018, 77 : 10635 - 10649
  • [5] Image steganalysis based on convolutional neural network and feature selection
    Sun, Zhanquan
    Lie, Feng
    Huang, Huifen
    Wang, Jian
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (05):
  • [6] Feature selection of infrared spectra analysis with convolutional neural network
    Xia, Jingjing
    Zhang, Jixiong
    Xiong, Yanmei
    Min, Shungeng
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 266
  • [7] Image Classification Using Convolutional Neural Network Based on Feature Selection for Edge Computing
    Hao, Pingchang
    Zhang, Liyong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8520 - 8526
  • [8] Effect on speech emotion classification of a feature selection approach using a convolutional neural network
    Amjad A.
    Khan L.
    Chang H.-T.
    PeerJ Computer Science, 2021, 7
  • [9] Effect on speech emotion classification of a feature selection approach using a convolutional neural network
    Amjad, Ammar
    Khan, Lal
    Chang, Hsien-Tsung
    PEERJ COMPUTER SCIENCE, 2021, 7
  • [10] Classification of Student Success in Online Courses Using Feature Selection and Convolutional Neural Network
    Tekinarslan, Ramazan
    Sert, Mustafa
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,