Simulating the Earth system response to negative emissions

被引:113
作者
Jones, C. D. [1 ]
Ciais, P. [2 ]
Davis, S. J. [3 ]
Friedlingstein, P. [4 ]
Gasser, T. [2 ,5 ]
Peters, G. P. [6 ]
Rogelj, J. [7 ,8 ]
van Vuuren, D. P. [9 ,10 ]
Canadell, J. G. [11 ]
Cowie, A. [12 ]
Jackson, R. B. [13 ,14 ]
Jonas, M. [15 ]
Kriegler, E. [16 ]
Littleton, E. [17 ]
Lowe, J. A.
Milne, J. [18 ]
Shrestha, G. [19 ]
Smith, P. [20 ]
Torvanger, A. [6 ]
Wiltshire, A. [1 ]
机构
[1] Hadley Ctr, Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England
[2] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France
[3] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA
[4] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QE, Devon, England
[5] AgroParisTech CIRAD, PontsParisTech EHESS, CNRS, Ctr Int Rech Environm & Dev, F-94736 Nogent Sur Marne, France
[6] CICERO, Gaustadalleen 21, NO-0349 Oslo, Norway
[7] Int Inst Appl Syst Anal, Energy Program, Schlosspl 1, A-2361 Laxenburg, Austria
[8] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland
[9] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[10] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
[11] CSIRO Oceans & Atmosphere Res, Global Carbon Project, GPO Box 3023, Canberra, ACT 2601, Australia
[12] Univ New England, NSW Dept Primary Ind, Armidale, NSW 2351, Australia
[13] Stanford Univ, Woods Inst Environm, Dept Earth Syst Sci, Stanford, CA 94305 USA
[14] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
[15] Int Inst Appl Syst Anal, Adv Syst Anal, Schlosspl 1, A-2361 Laxenburg, Austria
[16] Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam, Germany
[17] Univ East Anglia, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[18] Stanford Univ, 473 Via Ortega, Stanford, CA 94305 USA
[19] US Global Change Res Program, US Carbon Cycle Sci Program, Washington, DC 20006 USA
[20] Univ Aberdeen, Inst Biol & Environm Sci, 23 St Machar Dr, Aberdeen AB24 3UU, Scotland
基金
欧洲研究理事会;
关键词
climate; carbon cycle; earth system; negative emissions; carbon dioxide removal; mitigation scenarios; CLIMATE; UNCERTAINTY; CO2; REMOVAL;
D O I
10.1088/1748-9326/11/9/095012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Natural carbon sinks currently absorb approximately half of the anthropogenic CO2 emitted by fossil fuel burning, cement production and land-use change. However, this airborne fractionmay change in the future depending on the emissions scenario. An important issue in developing carbon budgets to achieve climate stabilisation targets is the behaviour of natural carbon sinks, particularly under low emissions mitigation scenarios as required to meet the goals of the Paris Agreement. A key requirement for low carbon pathways is to quantify the effectiveness of negative emissions technologies which will be strongly affected by carbon cycle feedbacks. Here we find that Earth system models suggest significant weakening, even potential reversal, of the ocean and land sinks under future low emission scenarios. For the RCP 2.6 concentration pathway, models project land and ocean sinks to weaken to 0.8 +/- 0.9 and 1.1 +/- 0.3 GtC yr(-1) respectively for the second half of the 21st century and to -0.4 +/- 0.4 and 0.1 +/- 0.2 GtC yr(-1) respectively for the second half of the 23rd century. Weakening of natural carbon sinks will hinder the effectiveness of negative emissions technologies and therefore increase their required deployment to achieve a given climate stabilisation target. We introduce a new metric, the perturbation airborne fraction, to measure and assess the effectiveness of negative emissions.
引用
收藏
页数:11
相关论文
共 29 条
[1]  
[Anonymous], GLOBAL ENERGY ASSESS
[2]   Atmospheric carbon dioxide removal: long-term consequences and commitment [J].
Cao, Long ;
Caldeira, Ken .
ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (02)
[3]   CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming [J].
Cherubini, Francesco ;
Peters, Glen P. ;
Berntsen, Terje ;
Stromman, Anders H. ;
Hertwich, Edgar .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2011, 3 (05) :413-426
[4]  
Ciais P, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P465
[5]  
Clarke L, 2014, CLIMATE CHANGE 2014: MITIGATION OF CLIMATE CHANGE, P413
[6]   COMMENTARY: Betting on negative emissions [J].
Fuss, Sabine ;
Canadell, Josep G. ;
Peters, Glen P. ;
Tavoni, Massimo ;
Andrew, Robbie M. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Jones, Chris D. ;
Kraxner, Florian ;
Nakicenovic, Nebosja ;
Le Quere, Corinne ;
Raupach, Michael R. ;
Sharifi, Ayyoob ;
Smith, Pete ;
Yamagata, Yoshiki .
NATURE CLIMATE CHANGE, 2014, 4 (10) :850-853
[7]   Negative emissions physically needed to keep global warming below 2 °C [J].
Gasser, T. ;
Guivarch, C. ;
Tachiiri, K. ;
Jones, C. D. ;
Ciais, P. .
NATURE COMMUNICATIONS, 2015, 6
[8]   What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy? [J].
House, Joanna I. ;
Huntingford, Chris ;
Knorr, Wolfgang ;
Cornell, Sarah E. ;
Cox, Peter M. ;
Harris, Glen R. ;
Jones, Chris D. ;
Lowe, Jason A. ;
Prentice, I. Colin .
ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04)
[9]   Contributions of carbon cycle uncertainty to future climate projection spread [J].
Huntingford, C. ;
Lowe, J. A. ;
Booth, B. B. B. ;
Jones, C. D. ;
Harris, G. R. ;
Gohar, L. K. ;
Meir, P. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2009, 61 (02) :355-360
[10]   Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature [J].
Jones, CD ;
Cox, P ;
Huntingford, C .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2003, 55 (02) :642-648