Analytic properties of the standard twist of L-functions

被引:0
|
作者
Kaczorowski, Jerzy [1 ,2 ]
Perelli, Alberto [3 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
来源
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA | 2021年 / 12卷 / 01期
关键词
L-functions; standard twist; convexity bounds; distribution of zeros; nonlinear exponential sums; Selberg class; SELBERG CLASS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some consequences of the functional equation satisfied by the standard twist F(s, alpha) of the L-functions F(s) from the extended Selberg class. The shape of such a functional equation differs significantly from the classical one of Riemann-type satisfied by F(s); for example, it contains an error term which can identically vanish only in some special but well described cases. In this paper we show that this unusual functional equation can nevertheless be used to investigate convexity bounds, asymptotic formulae for the average of the coefficients and distribution of zeros of F(s, alpha).
引用
收藏
页码:125 / 141
页数:17
相关论文
共 50 条
  • [41] Computing L-Functions: A Survey
    Cohen, Henri
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (03): : 699 - 726
  • [42] Nonvanishing of Dirichlet L-functions
    Khan, Rizwanur
    Ngo, Hieu T.
    ALGEBRA & NUMBER THEORY, 2016, 10 (10) : 2081 - 2091
  • [43] Kernels for products of L-functions
    Diamantis, Nikolaos
    O'Sullivan, Cormac
    ALGEBRA & NUMBER THEORY, 2013, 7 (08) : 1883 - 1917
  • [44] On value distribution of L-functions sharing finite sets with meromorphic functions
    Khoai, Ha Huy
    An, Vu Hoai
    Phuong, Nguyen Duy
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03): : 265 - 280
  • [45] Simultaneous non-vanishing of quadratic Dirichlet L-functions and twists of Hecke L-functions
    Maiti, Gopal
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
  • [46] ON CURIOUS GENERATING FUNCTIONS FOR VALUES OF L-FUNCTIONS
    Patkowski, Alexander E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (07) : 1531 - 1540
  • [47] Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions
    Miatiyasevich, Yu.
    Saidak, F.
    Zvengrowski, P.
    ACTA ARITHMETICA, 2014, 166 (02) : 189 - 200
  • [48] Uniqueness theorems for L-functions in the extended Selberg class
    Hao, Wen-Jie
    Chen, Jun-Fan
    OPEN MATHEMATICS, 2018, 16 : 1291 - 1299
  • [49] Large values of L-functions from the Selberg class
    Aistleitner, Christoph
    Pankowski, Lukasz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 345 - 364
  • [50] On the vertical distribution of values of L-functions in the Selberg class
    Sourmelidis, Athanasios
    Srichan, Teerapat
    Steuding, Jorn
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (02) : 277 - 302