Diophantine approximation on planar curves and the distribution of rational points

被引:69
作者
Beresnevich, Victor [1 ]
Dickinson, Detta [1 ]
Velani, Sanju [1 ]
Vaughan, R. C. [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
关键词
D O I
10.4007/annals.2007.166.367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a nondegenerate planar curve and for a real, positive decreasing function psi let C(psi) denote the set of simultaneously psi-approximable points lying on C. We show that C is of Khintchine type for divergence; i.e. if a certain sum diverges then the one-dimensional Lebesgue measure on C of C(psi) is full. We also obtain the Hausdorff measure analogue of the divergent Khintchine type result. In the case that C is a rational quadric the convergence counterparts of the divergent results are also obtained. Furthermore, for functions psi with lower order in a critical range we determine a general, exact formula for the Hausdorff dimension of C(psi). These results constitute the first precise and general results in the theory of simultaneous Diophantine approximation on manifolds.
引用
收藏
页码:367 / 426
页数:60
相关论文
共 33 条
[1]  
[Anonymous], 1979, METRIC THEORY DIOPHA
[2]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[4]  
Beresnevich V, 2006, MEM AM MATH SOC, V179, P1
[5]  
Beresnevich V, 1999, ACTA ARITH, V90, P97
[6]   METRIC DIOPHANTINE APPROXIMATION: THE KHINTCHINE-GROSHEV THEOREM FOR NONDEGENERATE MANIFOLDS [J].
Beresnevich, V. V. ;
Bernik, V. I. ;
Kleinbock, D. Y. ;
Margulis, G. A. .
MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) :203-225
[7]   A note on simultaneous Diophantine approximation on planar curves [J].
Beresnevich, Victor V. ;
Velani, Sanju L. .
MATHEMATISCHE ANNALEN, 2007, 337 (04) :769-796
[8]  
Beresnevich VV, 1999, DOKL AKAD NAUK BELAR, V43, P9
[9]  
Bernik V, 2001, INT MATH RES NOTICES, V2001, P453
[10]  
BERNIK V, 1973, IZV AKAD NAUK BSS PM, V1, P10