Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation

被引:13
|
作者
Chaudhry, Jehanzeb Hameed [1 ]
Bond, Stephen D. [2 ]
Olson, Luke N. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Sandia Natl Labs, Appl Math & Applicat Grp, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Finite elements; Poisson-Boltzmann; Poisson-Bikerman; ELECTRICAL DOUBLE-LAYER; ELECTROSTATICS; IONS; MINIMIZATION; SOLVENT; SYSTEMS; ENERGY; SHAPE;
D O I
10.1007/s10915-010-9441-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inclusion of steric effects is important when determining the electrostatic potential near a solute surface. We consider a modified form of the Poisson-Boltzmann equation, often called the Poisson-Bikerman equation, in order to model these effects. The modifications lead to bounded ionic concentration profiles and are consistent with the Poisson-Boltzmann equation in the limit of zero-size ions. Moreover, the modified equation fits well into existing finite element frameworks for the Poisson-Boltzmann equation. In this paper, we advocate a wider use of the modified equation and establish well-posedness of the weak problem along with convergence of an associated finite element formulation. We also examine several practical considerations such as conditioning of the linearized form of the nonlinear modified Poisson-Boltzmann equation, implications in numerical evaluation of the modified form, and utility of the modified equation in the context of the classical Poisson-Boltzmann equation.
引用
收藏
页码:347 / 364
页数:18
相关论文
共 50 条
  • [31] Efficient solution technique for solving the Poisson-Boltzmann equation
    Sayyed-Ahmad, A
    Tuncay, K
    Ortoleva, PJ
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (08) : 1068 - 1074
  • [32] Multi-multigrid solution of modified Poisson-Boltzmann equation for arbitrarily shaped molecules
    Tomac, S
    Gräslund, A
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1998, 19 (08) : 893 - 901
  • [33] AN EFFECTIVE MINIMIZATION PROTOCOL FOR SOLVING A SIZE-MODIFIED POISSON-BOLTZMANN EQUATION FOR BIOMOLECULE IN IONIC SOLVENT
    Li, Jiao
    Xie, Dexuan
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 286 - 301
  • [34] FINITE ELEMENT APPROXIMATION OF THE ISAACS EQUATION
    Salgado, Abner J.
    Zhang, Wujun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 351 - 374
  • [35] Modified Poisson-Boltzmann equations for characterizing biomolecular solvation
    Koehl, Patrice
    Poitevin, Frederic
    Orland, Henri
    Delarue, Marc
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2014, 13 (03):
  • [36] Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT
    Ringe, Stefan
    Oberhofer, Harald
    Hille, Christoph
    Matera, Sebastian
    Reuter, Karsten
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) : 4052 - 4066
  • [37] An improved pairwise decomposable finite-difference Poisson-Boltzmann method for computational protein design
    Vizcarra, Christina L.
    Zhang, Naigong
    Marshall, Shannon A.
    Wingreen, Ned S.
    Zeng, Chen
    Mayo, Stephen L.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (07) : 1153 - 1162
  • [38] Accuracy of the numerical solution of the Poisson-Boltzmann equation
    Moreira, IS
    Fernandes, PA
    Ramos, MJ
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2005, 729 (1-2): : 11 - 18
  • [39] Towards optimal boundary integral formulations of the Poisson-Boltzmann equation for molecular electrostatics
    Search, Stefan D.
    Cooper, Christopher D.
    van't Wout, Elwin
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (10) : 674 - 691
  • [40] A Boundary-Integral Approach for the Poisson-Boltzmann Equation with Polarizable Force Fields
    Cooper, Christopher D.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (18) : 1680 - 1692