Number of Raman- and infrared-active vibrations in single-walled carbon nanotubes

被引:59
作者
Alon, OE [1 ]
机构
[1] Technion Israel Inst Technol, Dept Chem, IL-32000 Haifa, Israel
关键词
D O I
10.1103/PhysRevB.63.201403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By analyzing the point groups of the (nonsymmorphic) rod-groups of carbon nanotubes we show, for the first time, to the best of our knowledge, that all achiral carbon nanotubes possess only 8 Raman-active and 3 infrared-active phonon modes. This is in contrast to previously predicted 15-16 and 7-8 active modes, respectively. On the same ground we show that all chiral carbon nanotubes have 14 (instead of 15) Raman-active and 6 (instead of 9) infrared-active phonon modes.
引用
收藏
页数:3
相关论文
共 15 条
[1]  
Cornwell J, 1969, GROUP THEORY ELECT E
[2]   Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes [J].
Damnjanovic, M ;
Milosevic, I ;
Vukovic, T ;
Sredanovic, R .
PHYSICAL REVIEW B, 1999, 60 (04) :2728-2739
[3]   Carbon nanotubes as molecular quantum wires [J].
Dekker, C .
PHYSICS TODAY, 1999, 52 (05) :22-28
[4]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[5]  
Harris D.C., 1989, Symmetry and spectroscopy: An introduction to vibrational and electronic spectroscopy
[6]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[7]   PHONON MODES IN CARBON NANOTUBULES [J].
JISHI, RA ;
VENKATARAMAN, L ;
DRESSELHAUS, MS ;
DRESSELHAUS, G .
CHEMICAL PHYSICS LETTERS, 1993, 209 (1-2) :77-82
[8]   SYMMETRY PROPERTIES OF CHIRAL CARBON NANOTUBES [J].
JISHI, RA ;
DRESSELHAUS, MS ;
DRESSELHAUS, G .
PHYSICAL REVIEW B, 1993, 47 (24) :16671-16674
[9]   Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J].
Journet, C ;
Maser, WK ;
Bernier, P ;
Loiseau, A ;
delaChapelle, ML ;
Lefrant, S ;
Deniard, P ;
Lee, R ;
Fischer, JE .
NATURE, 1997, 388 (6644) :756-758
[10]   INFRARED SPECTRA OF HIGH POLYMERS .1. EXPERIMENTAL METHODS AND GENERAL THEORY [J].
LIANG, CY ;
KRIMM, S ;
SUTHERLAND, GBBM .
JOURNAL OF CHEMICAL PHYSICS, 1956, 25 (03) :543-548