Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries

被引:233
作者
Luo, Xu-Feng [1 ]
Yang, Cheng-Hsien [1 ]
Peng, You-Yu [2 ]
Pu, Nen-Wen [3 ]
Ger, Ming-Der [2 ]
Hsieh, Chien-Te [4 ]
Chang, Jeng-Kuei [1 ]
机构
[1] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan, Taiwan
[2] Natl Def Univ, Dept Chem & Mat Engn, Taoyuan, Taiwan
[3] Yuan Ze Univ, Dept Photon Engn, Chungli, Taiwan
[4] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Chungli, Taiwan
关键词
LITHIUM-ION; ENERGY-STORAGE; RATE CAPABILITY; LOW-COST; ELECTROLYTE; PERFORMANCE; INSERTION; CAPACITY; OXIDE; FUTURE;
D O I
10.1039/c5ta00727e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical sodium-ion storage properties of graphene nanosheets (GNSs), carbon nanotubes (CNTs), mesocarbon microbeads (MCMBs), and activated carbon (AC) are investigated. An irreversible oxidation occurs for the AC electrode during desodiation, limiting its use in sodium-ion batteries. The MCMB electrode shows a negligible capacity (similar to 2 mA h g(-1)), since the graphitic structure has a low surface area and is thus not capable of storing a sufficient amount of Na+. In contrast, the CNT and GNS electrodes exhibit reversible capacities of 82 and 220 mA h g(-1), respectively, at a charge-discharge rate of 30 mA g(-1). The high electro-adsorption/desorption area, large number of Na+ entrance/exit sites, and a large d-spacing of GNSs contribute to their superior Na+ storage capacity. At a high rate of 5 A g (1), the GNS electrode still delivers a capacity of as high as 105 mA h g(-1), indicating great high-power ability. The charge storage mechanism of the electrode is examined using an ex situ X-ray diffraction technique.
引用
收藏
页码:10320 / 10326
页数:7
相关论文
共 33 条
[1]   Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C [J].
Alcántara, R ;
Mateos, JMJ ;
Tirado, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A201-A205
[2]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[3]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[4]  
Doeff M. M., 1993, J ELECTROCHEM SOC, V140, P169
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   INVESTIGATION OF THE POROUS STRUCTURE OF ACTIVATED CARBONS PREPARED BY PYROLYSIS OF AGRICULTURAL BY-PRODUCTS IN A STREAM OF WATER-VAPOR [J].
GERGOVA, K ;
GALUSHKO, A ;
PETROV, N ;
MINKOVA, V .
CARBON, 1992, 30 (05) :721-727
[8]   Raman scattering from high-frequency phonons in supported n-graphene layer films [J].
Gupta, A. ;
Chen, G. ;
Joshi, P. ;
Tadigadapa, S. ;
Eklund, P. C. .
NANO LETTERS, 2006, 6 (12) :2667-2673
[9]   Charge carriers in rechargeable batteries: Na ions vs. Li ions [J].
Hong, Sung You ;
Kim, Youngjin ;
Park, Yuwon ;
Choi, Aram ;
Choi, Nam-Soon ;
Lee, Kyu Tae .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (07) :2067-2081
[10]   Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance [J].
Jiang, Zhongqing ;
Pei, Bo ;
Manthiram, Arumugam .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (26) :7775-7781