High-throughput sequencing reveals circular substrates for an archaeal RNA ligase

被引:10
|
作者
Becker, Hubert F. [1 ,2 ]
Heliou, Alice [1 ,3 ]
Djaout, Kamel [1 ]
Lestini, Roxane [1 ]
Regnier, Mireille [3 ]
Myllykallio, Hannu [1 ]
机构
[1] Univ Paris Saclay, INSERM, CNRS, LOB,Ecole Polytech, Palaiseau, France
[2] UPMC Univ Paris 06, Sorbonne Univ, 4 Pl Jussieu, Paris, France
[3] Univ Paris Saclay, CNRS, Ecole Polytech, LIX,INRIA, Palaiseau, France
关键词
Archaea; circular RNA; computational biology; RNA ligase; RNA-Seq; STRANDED-RNA; INTRONS; CIRCLES; PROTEIN;
D O I
10.1080/15476286.2017.1302640
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules.
引用
收藏
页码:1075 / 1085
页数:11
相关论文
共 50 条
  • [31] A convenient strategy to clone small RNA and mRNA for high-throughput sequencing
    Li, Lichao
    Dai, Hui
    Nguyen, An-Phong
    Gu, Weifeng
    RNA, 2020, 26 (02) : 218 - 227
  • [32] EXAMINING RNA-PROCESSING IN MICROSPORIDIA WITH HIGH-THROUGHPUT TRANSCRIPTOME SEQUENCING
    Grisdale, C. J.
    Fast, N. M.
    JOURNAL OF PHYCOLOGY, 2011, 47 : S88 - S88
  • [33] High-throughput RNA sequencing of paraformaldehyde-fixed single cells
    Hoang Van Phan
    Michiel van Gent
    Nir Drayman
    Anindita Basu
    Michaela U. Gack
    Savaş Tay
    Nature Communications, 12
  • [34] ANALYSIS OF WOUND HEALING USING HIGH-THROUGHPUT RNA-SEQUENCING
    Zhang, D. X.
    Lam, M.
    Glass, C.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2013, 61 (01) : 118 - 118
  • [35] Pseudouridine site assignment by high-throughput in vitro RNA pseudouridylation and sequencing
    Martinez, Nicole M.
    Schaening-Burgos, Cassandra
    Gilbert, Wendy V.
    RNA MODIFICATION ENZYMES, 2021, 658 : 277 - 310
  • [36] Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis
    Schwartz, Michael H.
    Wang, Haipeng
    Pan, Jessica N.
    Clark, Wesley C.
    Cui, Steven
    Eckwahl, Matthew J.
    Pan, David W.
    Parisien, Marc
    Owens, Sarah M.
    Cheng, Brian L.
    Martinez, Kristina
    Xu, Jinbo
    Chang, Eugene B.
    Pan, Tao
    Eren, A. Murat
    NATURE COMMUNICATIONS, 2018, 9
  • [37] Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories
    't Hoen, Peter A. C.
    Friedlaender, Marc R.
    Almloef, Jonas
    Sammeth, Michael
    Pulyakhina, Irina
    Anvar, Seyed Yahya
    Laros, Jeroen F. J.
    Buermans, Henk P. J.
    Karlberg, Olof
    Brannvall, Mathias
    den Dunnen, Johan T.
    van Ommen, Gert-Jan B.
    Gut, Ivo G.
    Guigo, Roderic
    Estivill, Xavier
    Syvanen, Ann-Christine
    Dermitzakis, Emmanouil T.
    Lappalainen, Tuuli
    NATURE BIOTECHNOLOGY, 2013, 31 (11) : 1015 - +
  • [38] High-throughput RNA isoform sequencing using programmed cDNA concatenation
    Aziz M. Al’Khafaji
    Jonathan T. Smith
    Kiran V. Garimella
    Mehrtash Babadi
    Victoria Popic
    Moshe Sade-Feldman
    Michael Gatzen
    Siranush Sarkizova
    Marc A. Schwartz
    Emily M. Blaum
    Allyson Day
    Maura Costello
    Tera Bowers
    Stacey Gabriel
    Eric Banks
    Anthony A. Philippakis
    Genevieve M. Boland
    Paul C. Blainey
    Nir Hacohen
    Nature Biotechnology, 2024, 42 : 582 - 586
  • [39] Transcriptome of embryonic and neonatal mouse cortex by high-throughput RNA sequencing
    Han, Xinwei
    Wu, Xia
    Chung, Wen-Yu
    Li, Tao
    Nekrutenko, Anton
    Altman, Naomi S.
    Chen, Gong
    Ma, Hong
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (31) : 12741 - 12746
  • [40] High-throughput single-cell RNA sequencing of the developing lens
    Anand, Deepti
    Kakrana, Atul
    Skinner, Rosanne
    Bloomer, Clark
    Saadi, Irfan
    Lachke, Salil Anil
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)