CROP BIOPHYSICAL PARAMETERS ESTIMATION WITH A MULTI-TARGET INVERSION SCHEME USING THE SENTINEL-1 SAR DATA

被引:0
作者
Mandal, Dipankar [1 ]
Kumar, Vineet [1 ]
Bhattacharya, A. [1 ]
Rao, Y. S. [1 ]
McNairn, Heather [2 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Bombay, Maharashtra, India
[2] Agr & Agri Food Canada, Ottawa, ON, Canada
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Biophysical parameter; Canola; Multi-output support vector; Sentinel-1; SMAPVEX16-MB; LEAF-AREA INDEX; SURFACE-SOIL-MOISTURE; REGRESSION; RETRIEVAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a multi-target inversion scheme is adopted for joint estimation of crop biophysical parameters from dual-pol SAR data. The single-output support vector regression (SVR) method is extended to a multi-output support vector regression (MSVR) method to estimate biophysical parameters. The MSVR is implemented for simultaneous retrieval of plant area index (PAI) and crop biomass from the Sentinel-1 C-band dual-pol (VV+VH) data. In this particular study, the inversion algorithm is trained and validated for the canola crop using in-situ measurements collected during the Soil Moisture Active Passive Validation Experiment 2016 (SMAPVEX16-MB) Manitoba campaign. The validation results indicate a good correlation coefficient (r) of 0:72 and 0:85, with a RMSE of 0:35m(2)m (2) and 0:48 kgm (2) for PAI and wet biomass respectively. In addition, the mapped PAI and wet biomass values at flowering stage of canola capture the variability in crop growth from Sentinel-1 data.
引用
收藏
页码:6611 / 6614
页数:4
相关论文
共 14 条
[1]  
[Anonymous], EXPT PLAN SMAP VALID
[2]   VEGETATION MODELED AS A WATER CLOUD [J].
ATTEMA, EPW ;
ULABY, FT .
RADIO SCIENCE, 1978, 13 (02) :357-364
[3]   Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model [J].
Beriaux, Emilie ;
Waldner, Francois ;
Collienne, Francois ;
Bogaert, Patrick ;
Defourny, Pierre .
REMOTE SENSING, 2015, 7 (12) :16204-16225
[4]   Estimating surface-soil moisture for retrieving maize leaf-area index from SAR data [J].
Beriaux, Emilie ;
Lambot, Sebastien ;
Defourny, Pierre .
CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (01) :136-150
[5]   Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer [J].
Durbha, Surya S. ;
King, Roger L. ;
Younan, Nicolas H. .
REMOTE SENSING OF ENVIRONMENT, 2007, 107 (1-2) :348-361
[6]   Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data [J].
Hosseini, Mehdi ;
McNairn, Heather ;
Merzouki, Amine ;
Pacheco, Anna .
REMOTE SENSING OF ENVIRONMENT, 2015, 170 :77-89
[7]   On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters [J].
Lievens, Hans ;
Verhoest, Niko E. C. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) :740-744
[8]  
More J. J., 1978, Proceedings of the Biennial Conference on numerical analysis, P105
[9]   Using RADARSAT-2 and TerraSAR-X Satellite Data for the Identification of Canola Crop Phenology [J].
Pacheco, Anna ;
McNairn, Heather ;
Li, Yifeng ;
Lampropoulos, George ;
Powers, Jarrett .
REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVIII, 2016, 9998
[10]   ESTIMATING SURFACE SOIL-MOISTURE AND LEAF-AREA INDEX OF A WHEAT CANOPY USING A DUAL-FREQUENCY (C AND X-BANDS) SCATTEROMETER [J].
PREVOT, L ;
CHAMPION, I ;
GUYOT, G .
REMOTE SENSING OF ENVIRONMENT, 1993, 46 (03) :331-339