Polymer electrolytes and interfaces in solid-state lithium metal batteries

被引:317
作者
Ding, Peipei [1 ,2 ]
Lin, Zhiyuan [1 ,2 ]
Guo, Xianwei [1 ,2 ]
Wu, Lingqiao [1 ,2 ]
Wang, Yongtao [1 ,2 ]
Guo, Hongxia [1 ,2 ]
Li, Liangliang [3 ]
Yu, Haijun [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Inst Adv Battery Mat & Devices, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金;
关键词
Solid-state lithium metal batteries; Polymer electrolytes; Functional units adjustment; Interface stability; In-situ polymerization; HIGH IONIC-CONDUCTIVITY; IN-SALT ELECTROLYTES; BLOCK-COPOLYMER ELECTROLYTES; POLY(ETHYLENE OXIDE); HIGH-VOLTAGE; COMPOSITIONAL DEPENDENCE; CYCLING PERFORMANCE; SECONDARY BATTERIES; FREE-VOLUME; POLY(VINYLIDENE;
D O I
10.1016/j.mattod.2021.08.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.
引用
收藏
页码:449 / 474
页数:26
相关论文
共 175 条
[1]   Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane [J].
Ahmad, A. L. ;
Farooqui, U. R. ;
Hamid, N. A. .
ELECTROCHIMICA ACTA, 2018, 283 :842-849
[2]   The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors [J].
Alarco, PJ ;
Abu-Lebdeh, Y ;
Abouimrane, A ;
Armand, M .
NATURE MATERIALS, 2004, 3 (07) :476-481
[3]   RUBBERY SOLID ELECTROLYTES WITH DOMINANT CATIONIC TRANSPORT AND HIGH AMBIENT CONDUCTIVITY [J].
ANGELL, CA ;
LIU, C ;
SANCHEZ, E .
NATURE, 1993, 362 (6416) :137-139
[4]  
[Anonymous], 2002, MRS BULL, V27, P597
[5]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[6]   IONIC CONDUCTIVITIES OF POLY(METHOXY POLYETHYLENE-GLYCOL MONOMETHACRYLATE) COMPLEXES WITH LISO3CH3 [J].
BANNISTER, DJ ;
DAVIES, GR ;
WARD, IM ;
MCINTYRE, JE .
POLYMER, 1984, 25 (11) :1600-1602
[7]   IONIC CONDUCTIVITIES FOR POLY(ETHYLENE OXIDE) COMPLEXES WITH LITHIUM-SALTS OF MONOBASIC AND DIBASIC ACIDS AND BLENDS OF POLY(ETHYLENE OXIDE) WITH LITHIUM-SALTS OF ANIONIC POLYMERS [J].
BANNISTER, DJ ;
DAVIES, GR ;
WARD, IM ;
MCINTYRE, JE .
POLYMER, 1984, 25 (09) :1291-1296
[8]   Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries [J].
Ben Youcef, Hicham ;
Garcia-Calvo, Oihane ;
Lago, Nerea ;
Devaraj, Shanmukaraj ;
Armand, Michel .
ELECTROCHIMICA ACTA, 2016, 220 :587-594
[9]   Anion-binding calixarene receptors: Synthesis, microstructure, and effect on properties of polyether electrolytes [J].
Blazejczyk, A ;
Szczupak, M ;
Wieczorek, W ;
Cmoch, P ;
Appetecchi, GB ;
Scrosati, B ;
Kovarsky, R ;
Golodnitsky, D ;
Peled, E .
CHEMISTRY OF MATERIALS, 2005, 17 (06) :1535-1547
[10]   Novel solid polymer electrolytes with single lithium-ion transport [J].
Blazejczyk, A ;
Wieczorek, W ;
Kovarsky, R ;
Golodnitsky, D ;
Peled, E ;
Scanlon, LG ;
Appetecchi, GB ;
Scrosati, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) :A1762-A1766