LCD codes over finite chain rings

被引:85
作者
Liu, Xiusheng [1 ]
Liu, Hualu [1 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Hubei, Peoples R China
关键词
Finite chain rings; Complementary dual codes; Generator matrices; LINEAR CODES; CYCLIC CODES;
D O I
10.1016/j.ffa.2015.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear code with a complementary-dual (an LCD code) is defined to be a linear code C satisfying C boolean AND C-perpendicular to = {0}. We provide a necessary condition for an LCD linear code C over a finite chain ring. Under suitable conditions, we give a sufficient condition under which a linear code C over a finite chain ring is LCD. In particular, we derive a necessary and sufficient condition for free linear codes over a finite chain ring to be LCD. We also give a characterization of LCD codes over principal ideal rings. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
[31]   Quantum codes from linear codes over finite chain rings [J].
Xiusheng Liu ;
Hualu Liu .
Quantum Information Processing, 2017, 16
[32]   LCD Cyclic Codes Over Finite Fields [J].
Li, Chengju ;
Ding, Cunsheng ;
Li, Shuxing .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) :4344-4356
[33]   Skew Constacyclic Codes over Finite Fields and Finite Chain Rings [J].
Dinh, Hai Q. ;
Nguyen, Bac T. ;
Sriboonchitta, Songsak .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
[34]   Do non-free LCD codes over finite commutative Frobenius rings exist? [J].
Bhowmick, Sanjit ;
Fotue-Tabue, Alexandre ;
Martinez-Moro, Edgar ;
Bandi, Ramakrishna ;
Bagchi, Satya .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) :825-840
[35]   A Study of Galois LCD Codes Over a Family of Non-chain Rings [J].
Raj, Rishi ;
Pathak, Sachin ;
Kharkongor, Marbarisha M. ;
Maity, Dipendu .
NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2025,
[36]   On the Structure of Cyclic and Negacyclic Codes over Finite Chain Rings [J].
Dinh, Hai Q. ;
Lopez-Permouth, Sergio R. ;
Szabo, Steve .
CODES OVER RINGS, 2009, 6 :22-+
[37]   Linear codes over finite rings are trace codes [J].
Lu, Yaqi ;
Shi, Minjia ;
Greferath, Marcus ;
Sole, Patrick .
DISCRETE MATHEMATICS, 2020, 343 (08)
[38]   Additive cyclic codes over finite commutative chain rings [J].
Martinez-Moro, Edgar ;
Otal, Kamil ;
Ozbudak, Ferruh .
DISCRETE MATHEMATICS, 2018, 341 (07) :1873-1884
[39]   Matrix-product codes over finite chain rings [J].
Bram van Asch .
Applicable Algebra in Engineering, Communication and Computing, 2008, 19 :39-49
[40]   Notes on linear codes over finite commutative chain rings [J].
Liu, Zi-hui .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01) :141-148