Bounds on the Size of Balls over Permutations with the Infinity Metric

被引:0
作者
Schwartz, Moshe [1 ]
Vontohel, Pascal O. [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-8410501 Beer Sheva, Israel
[2] Chinese Univ Hong Kong, Dept Informat Engn, Shatin, Hong Kong, Peoples R China
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2015年
关键词
RANK-MODULATION; ERROR-CORRECTION; GROUP CODES; PERMANENT; ARRAYS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the size (or volume) of balls in the metric space of permutations, S-n, under the infinity metric. We focus on the regime of balls with radius r = rho.(n-1), rho is an element of [0, 1], i.e., a radius that is a constant fraction of the maximum possible distance. We provide new bounds on the size of such balls. These bounds reduce the asymptotic gap between the upper and lower bound to at most 0.06 bits per symbol.
引用
收藏
页码:1731 / 1735
页数:5
相关论文
共 46 条
  • [1] [Anonymous], 1978, The Theory of Error-Correcting Codes
  • [2] [Anonymous], IEEE T THEO IN PRESS
  • [3] [Anonymous], BOUNDS SIZE BALLS PE
  • [4] [Anonymous], 1977, J COMBIN THEORY A
  • [5] [Anonymous], EL C COMP COMPL JUN
  • [6] [Anonymous], COMBINATORIAL THEORY
  • [7] [Anonymous], 376 U BERG
  • [8] [Anonymous], P INF THEOR APPL WOR
  • [9] Error-correcting codes from permutation groups
    Bailey, Robert F.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4253 - 4265
  • [10] Codes in Permutations and Error Correction for Rank Modulation
    Barg, Alexander
    Mazumdar, Arya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) : 3158 - 3165