Critical behavior and partial miscibility phenomena in binary mixtures of hydrocarbons by the statistical associating fluid theory

被引:60
作者
Blas, FJ [1 ]
Vega, LF [1 ]
机构
[1] Univ Rovira & Virgili, ETSEQ, Dept Enginyeria Quim, Tarragona 43006, Spain
关键词
D O I
10.1063/1.477363
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predictions of critical lines and partial miscibility of binary mixtures of hydrocarbons have been made by using a modified version of the statistical associating fluid theory (SAFT). The so-called soft-SAFT equation of state uses the Lennard-Jones potential for the reference fluid, instead of the hard-sphere potential of the original SAFT, accounting explicitly far the repulsive and dispersive forces in the reference term. The mixture behavior is predicted once an adequate set of molecular parameters (segment size, dispersive energy, and chain length) of the pure fluid is available. We use two sets of such parameters. The first set is obtained by fitting to the experimental saturated liquid density and by equating the chemical potential in the liquid and vapor phases for a range of temperatures and pressures. The second set is obtained from the previous one, by rescaling the segment size and dispersive energy to the experimental critical temperature and pressure. Results obtained from the theory with these parameters are compared to experimental results of hydrocarbon binary mixtures. The first set gives only qualitative agreement with experimental critical lineal although the general trend is correctly predicted. The agreement is excellent, however, when soft-SAFT is used with the rescaled molecular parameters, showing the ability of SAFT to quantitatively predict the behavior of mixtures. The equation is also able to predict transitions from complete to partial miscibility in binary mixtures containing methane. (C) 1998 American Institute of Physics. [S0021-9606(98)51040-9].
引用
收藏
页码:7405 / 7413
页数:9
相关论文
共 57 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES FO
[2]   THERMODYNAMIC PERTURBATION-THEORY - STICKY CHAINS AND SQUARE-WELL CHAINS [J].
BANASZAK, M ;
CHIEW, YC ;
RADOSZ, M .
PHYSICAL REVIEW E, 1993, 48 (05) :3760-3765
[3]   THERMODYNAMIC PERTURBATION-THEORY - LENNARD-JONES CHAINS [J].
BANASZAK, M ;
CHIEW, YC ;
OLENICK, R ;
RADOSZ, M .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (05) :3803-3807
[4]   Prediction of binary and ternary diagrams using the statistical associating fluid theory (SAFT) equation of state [J].
Blas, FJ ;
Vega, LF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (02) :660-674
[5]  
Blas FJ, 1997, MOL PHYS, V92, P135, DOI 10.1080/00268979709482082
[6]  
BLAS FJ, UNPUB
[7]   AN EQUATION OF STATE FOR THE HARD-SPHERE CHAIN FLUID - THEORY AND MONTE-CARLO SIMULATION [J].
CHANG, J ;
SANDLER, SI .
CHEMICAL ENGINEERING SCIENCE, 1994, 49 (17) :2777-2791
[8]   PREDICTION OF THE THERMODYNAMIC PROPERTIES OF ASSOCIATING LENNARD-JONES FLUIDS - THEORY AND SIMULATION [J].
CHAPMAN, WG .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (06) :4299-4304
[9]   SAFT - EQUATION-OF-STATE SOLUTION MODEL FOR ASSOCIATING FLUIDS [J].
CHAPMAN, WG ;
GUBBINS, KE ;
JACKSON, G ;
RADOSZ, M .
FLUID PHASE EQUILIBRIA, 1989, 52 :31-38
[10]   NEW REFERENCE EQUATION OF STATE FOR ASSOCIATING LIQUIDS [J].
CHAPMAN, WG ;
GUBBINS, KE ;
JACKSON, G ;
RADOSZ, M .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1990, 29 (08) :1709-1721