TOPOLOGICAL ENTROPY AND PERIODS OF SELF MAPS ON COMPACT MANIFOLDS

被引:0
作者
Garcia Guirao, Juan Luis [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Politecn Cartagena, Hosp Marina, Dept Math Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
[2] Univ Autonoma Barcelona, Dept Math, E-08193 Barcelona, Catalonia, Spain
来源
HOUSTON JOURNAL OF MATHEMATICS | 2017年 / 43卷 / 04期
关键词
Compact manifold; topological entropy; discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; periodic point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, f) be a discrete dynamical system induced by a self-map f defined on a smooth compact connected n dimensional manifold M. We provide sufficient conditions in terms of the Lefschetz zeta function in order that: (1) f has positive topological entropy when f is C-infinity, and (2) f has infinitely many periodic points when f is C-1 and f(M) subset of Int(M). Moreover, for the particular manifolds S-n, S-n x S-m CPn and HPn we improve the previous sufficient conditions.
引用
收藏
页码:1337 / 1347
页数:11
相关论文
共 50 条
  • [31] Topological entropy of monotone maps and confluent maps on regular curves
    Kato, Hisao
    Topology Proceedings, Vol 28, No 2, 2004, 2004, 28 (02): : 587 - 593
  • [32] Topological entropy of the induced maps of the inverse limits with bonding maps
    Ye, XD
    TOPOLOGY AND ITS APPLICATIONS, 1995, 67 (02) : 113 - 118
  • [33] GRAPH MAPS WITH ZERO TOPOLOGICAL ENTROPY AND SEQUENCE ENTROPY PAIRS
    Li, Jian
    Liang, Xianjuan
    Oprocha, Piotr
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) : 4757 - 4770
  • [34] On dynamics of graph maps with zero topological entropy
    Li, Jian
    Oprocha, Piotr
    Yang, Yini
    Zeng, Tiaoying
    NONLINEARITY, 2017, 30 (12) : 4260 - 4276
  • [35] SUBSPACES OF INTERVAL MAPS RELATED TO THE TOPOLOGICAL ENTROPY
    Fan, Xiaoxin
    Li, Jian
    Yang, Yini
    Yang, Zhongqiang
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (02) : 701 - 714
  • [36] Computation of Topological Entropy of Finite Representations of Maps
    Galias, Zbigniew
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2018, : 533 - 536
  • [37] TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS
    Carrasco-Olivera, Dante
    Metzger Alvan, Roger
    Morales Rojas, Carlos Arnoldo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3461 - 3474
  • [38] Topological entropy of induced circle maps on hyperspaces
    Ju, Hyonhui
    Kim, Cholsan
    Ri, Songhun
    TOPOLOGY AND ITS APPLICATIONS, 2023, 328
  • [39] A Simplified Algorithm for the Topological Entropy of Multimodal Maps
    Amigo, Jose M.
    Gimenez, Angel
    ENTROPY, 2014, 16 (02): : 627 - 644
  • [40] Topological entropy of a sequence of monotone maps on circles
    Zhu, YJ
    Zhang, JL
    He, LF
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (02) : 373 - 382