Gluing of graph Laplacians and their spectra

被引:2
作者
Contreras, Ivan [1 ]
Toriyama, Michael [2 ]
Yu, Chengzheng [3 ]
机构
[1] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Dept Math, Urbana, IL USA
[3] Georgetown Univ, Dept Econ, Washington, DC USA
基金
美国国家科学基金会;
关键词
Graph Laplacian; Fiedler value; graph quantum mechanics;
D O I
10.1080/03081087.2018.1516727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two different types of gluing for graphs: interface (obtained by choosing a common subgraph as the gluing component) and bridge gluing (obtained by adding a set of edges to the given subgraphs). We introduce formulae for computing even and odd Laplacians of graphs obtained by gluing, as well as their spectra. We subsequently discuss applications to quantum mechanics and bounds for the Fiedler value of the gluing of graphs.
引用
收藏
页码:710 / 749
页数:40
相关论文
共 50 条
[41]   The critical group of a threshold graph [J].
Christianson, H ;
Reiner, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 349 (349) :233-244
[42]   An eigenvalue bound for the Laplacian of a graph [J].
Grossman, JP .
DISCRETE MATHEMATICS, 2005, 300 (1-3) :225-228
[43]   GRAPH LAPLACIAN FOR IMAGE DEBLURRING [J].
BIANCHI, D. A. V. I. D. E. ;
BUCCINI, A. L. E. S. S. A. N. D. R. O. ;
DONATELL, M. A. R. C. O., I ;
RANDAZZO, E. M. M. A. .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 :169-186
[44]   Spectrahedral Geometry of Graph Sparsifiers [J].
Babecki, Catherine ;
Steinerberger, Stefan ;
Thomas, Rekha r. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2025, 39 (01) :449-483
[45]   THE GRAPH LAPLACIAN AND MORSE INEQUALITIES [J].
Contreras, Ivan ;
Xu, Boyan .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 300 (02) :331-345
[46]   On the graph Laplacian and the rankability of data [J].
Cameron, Thomas R. ;
Langville, Amy N. ;
Smith, Heather C. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 :81-100
[47]   GRAPH DIFFUSION DISTANCE : A DIFFERENCE MEASURE FOR WEIGHTED GRAPHS BASED ON THE GRAPH LAPLACIAN EXPONENTIAL KERNEL [J].
Hammond, David K. ;
Gur, Yaniv ;
Johnson, Chris R. .
2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, :419-422
[48]   The nearest graph Laplacian in Frobenius norm [J].
Sato, Kazuhiro ;
Suzuki, Masato .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (06)
[49]   Dual Graph Regularized Dictionary Learning [J].
Yankelevsky, Yael ;
Elad, Michael .
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2016, 2 (04) :611-624
[50]   Concurrence and three-tangle of the graph [J].
Joshi, Anoopa ;
Singh, Ranveer ;
Kumar, Atul .
QUANTUM INFORMATION PROCESSING, 2018, 17 (12)