On the essential dimension of cyclic p-groups

被引:26
|
作者
Florence, Mathieu [1 ]
机构
[1] Ecole Polytech Fed Lausanne, FSB MA, CH-1015 Lausanne, Switzerland
关键词
Algebraic Group; Essential Dimension; Division Algebra; Linear Algebraic Group; Central Simple Algebra;
D O I
10.1007/s00222-007-0079-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number, let K be a field of characteristic not p, containing the p-th roots of unity, and let r >= 1 be an integer. We compute the essential dimension of Z/p(r) Z over K (Theorem 4.1). In particular, i) We have ed(Q)(Z/8Z)=4, a result which was conjectured by Buhler and Reichstein in 1995 (unpublished). ii) We have ed(Q)(Z/p(r) Z) >= p(r-1).
引用
收藏
页码:175 / 189
页数:15
相关论文
共 50 条