1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window

被引:186
作者
Villa, Irene [1 ]
Vedda, Anna [1 ]
Cantarelli, Irene Xochilt [2 ,3 ]
Pedroni, Marco [2 ,3 ]
Piccinelli, Fabio [2 ,3 ]
Bettinelli, Marco [2 ,3 ]
Speghini, Adolfo [2 ,3 ]
Quintanilla, Marta [4 ]
Vetrone, Fiorenzo [4 ]
Rocha, Ueslen [5 ]
Jacinto, Carlos [5 ]
Carrasco, Elisa [6 ]
Sanz Rodriguez, Francisco [6 ]
Juarranz, Angeles [6 ]
del Rosal, Blanca [7 ]
Ortgies, Dirk H. [7 ]
Haro Gonzalez, Patricia [7 ]
Garcia Sole, Jose [7 ]
Jaque Garcia, Daniel [7 ]
机构
[1] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy
[2] Univ Verona, Dipartimento Biotecnol, I-37134 Verona, Italy
[3] INSTM, UdR Verona, I-37134 Verona, Italy
[4] Univ Quebec, Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada
[5] Univ Fed Alagoas, Inst Fis, Grp Foton & Fluidos Complexos, BR-57072970 Maceio, Alagoas, Brazil
[6] Univ Autonoma Madrid, Fac Ciencias, Dept Biol, E-28049 Madrid, Spain
[7] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Mat, Fluorescence Imaging Grp, E-28049 Madrid, Spain
关键词
fluorescence imaging; rare earth doped nanoparticles; nanomedicine; INFRARED UP-CONVERSION; AG2S QUANTUM DOTS; GOLD NANOPARTICLES; CARBON NANOTUBES; CANCER-THERAPY; DRUG-DELIVERY; FLUORESCENCE; ND3+; BIODISTRIBUTION; NANOTECHNOLOGY;
D O I
10.1007/s12274-014-0549-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel approaches for high contrast, deep tissue, in vivo fluorescence biomedical imaging are based on infrared-emitting nanoparticles working in the so-called second biological window (1,000-1,400 nm). This allows for the acquisition of high resolution, deep tissue images due to the partial transparency of tissues in this particular spectral range. In addition, the optical excitation with low energy (infrared) photons also leads to a drastic reduction in the contribution of autofluorescence to the in vivo image. Nevertheless, as is demonstrated here, working solely in this biological window does not ensure a complete removal of autofluorescence as the specimen's diet shows a remarkable infrared fluorescence that extends up to 1,100 nm. In this work, we show how the 1,340 nm emission band of Nd3+ ions embedded in SrF2 nanoparticles can be used to produce autofluorescence free, high contrast in vivo fluorescence images. It is also demonstrated that the complete removal of the food-related infrared autofluorescence is imperative for the development of reliable biodistribution studies.
引用
收藏
页码:649 / 665
页数:17
相关论文
共 85 条
[1]   In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques [J].
Al Faraj, Achraf ;
Fauvelle, Florence ;
Luciani, Nathalie ;
Lacroix, Ghislaine ;
Levy, Michael ;
Cremillieux, Yannick ;
Canet-Soulas, Emmanuelle .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 :351-361
[2]   Less is more in medicine - Sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy [J].
Alivisatos, AP .
SCIENTIFIC AMERICAN, 2001, 285 (03) :66-73
[3]   TEMPERATURE-DEPENDENT CONCENTRATION QUENCHING OF ND3+ FLUORESCENCE IN FLUORIDE GLASSES [J].
BALDA, R ;
FERNANDEZ, J ;
MENDIOROZ, A ;
ADAM, JL ;
BOULARD, B .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (04) :913-924
[4]   Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models [J].
Balogh, Lajos ;
Nigavekar, Shraddha S. ;
Nair, Bindu M. ;
Lesniak, Wojciech ;
Zhang, Chunxin ;
Sung, Lok Yun ;
Kariapper, Muhammed S. T. ;
El-Jawahri, Areej ;
Llanes, Mikel ;
Bolton, Brian ;
Mamou, Fatema ;
Tan, Wei ;
Hutson, Alan ;
Minc, Leah ;
Khan, Mohamed K. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2007, 3 (04) :281-296
[5]   Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging [J].
Bao, Gang ;
Mitragotri, Samir ;
Tong, Sheng .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 15, 2013, 15 :253-282
[6]   Red persistent luminescence in MgGa2O4 : Cr3+; a new phosphor for in vivo imaging [J].
Basavaraju, N. ;
Sharma, S. ;
Bessiere, A. ;
Viana, B. ;
Gourier, D. ;
Priolkar, K. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (37)
[7]   Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging [J].
Bhaumik, Srabani ;
DePuy, Jeannette ;
Klimash, June .
LAB ANIMAL, 2007, 36 (08) :40-43
[8]   Optical imaging of alpha emitters: simulations, phantom, and in vivo results [J].
Boschi, Federico ;
Lo Meo, Sergio ;
Rossi, Pier Luca ;
Calandrino, Riccardo ;
Sbarbati, Andrea ;
Spinelli, Antonello E. .
JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (12)
[9]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[10]   Role of the Functionalization of the Gold Nanoparticle Surface on the Formation of Bioconjugates with Human Serum Albumin [J].
Canaveras, Fernando ;
Madueno, Rafael ;
Sevilla, Jose M. ;
Blazquez, Manuel ;
Pineda, Teresa .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (18) :10430-10437