Time-dependent active microrheology in dilute colloidal suspensions

被引:8
作者
Leitmann, Sebastian [1 ]
Mandal, Suvendu [1 ]
Fuchs, Matthias [2 ]
Puertas, Antonio M. [3 ]
Franosch, Thomas [1 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21A, A-6020 Innsbruck, Austria
[2] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
[3] Univ Almeria, Dept Appl Phys, Grp Complex Fluids Phys, Almeria 04120, Spain
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 10期
关键词
VELOCITY AUTOCORRELATION FUNCTION; FORCE-INDUCED DIFFUSION; SINGLE-PARTICLE MOTION; HARD-CORE INTERACTION; NONLINEAR MICRORHEOLOGY; BROWNIAN PARTICLES; DISPERSIONS; MODEL; LOCALIZATION; MEMORY;
D O I
10.1103/PhysRevFluids.3.103301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a microrheological setup a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute suspension of Brownian particles to a large step force, exact in first order of the density of the bath particles. The time-dependent drift velocity approaches its stationary-state value exponentially fast for arbitrarily small driving in striking contrast to the power-law prediction of linear response encoded in the long-time tails of the velocity autocorrelation function. We show that the stationary-state behavior depends nonanalytically on the driving force and connect this behavior to the persistent correlations in the equilibrium state. We argue that this relation holds generically. Furthermore, we elaborate that the fluctuations in the direction of the force display transient superdiffusive behavior.
引用
收藏
页数:21
相关论文
共 61 条
[1]   CORRELATIONS FOR DILUTE HARD-CORE SUSPENSIONS [J].
ACKERSON, BJ ;
FLEISHMAN, L .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (05) :2675-2679
[2]   HEAT AND MASS TRANSFER FROM SINGLE SPHERES IN STOKES FLOW [J].
ACRIVOS, A ;
TAYLOR, TD .
PHYSICS OF FLUIDS, 1962, 5 (04) :387-394
[3]   DECAY OF VELOCITY AUTOCORRELATION FUNCTION [J].
ALDER, BJ ;
WAINWRIGHT, TE .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01) :18-+
[4]  
[Anonymous], 2010, Handbook of Mathematical Functions
[5]   BROWNIAN DIFFUSION OF PARTICLES WITH HYDRODYNAMIC INTERACTION [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1976, 74 (MAR9) :1-29
[6]   The localization transition of the two-dimensional Lorentz model [J].
Bauer, T. ;
Hoefling, F. ;
Munk, T. ;
Frey, E. ;
Franosch, T. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 189 (01) :103-118
[7]   Microscopic Theory for Negative Differential Mobility in Crowded Environments [J].
Benichou, O. ;
Illien, P. ;
Oshanin, G. ;
Sarracino, A. ;
Voituriez, R. .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[8]   Geometry-Induced Superdiffusion in Driven Crowded Systems [J].
Benichou, Olivier ;
Bodrova, Anna ;
Chakraborty, Dipanjan ;
Illien, Pierre ;
Law, Adam ;
Mejia-Monasterio, Carlos ;
Oshanin, Gleb ;
Voituriez, Raphael .
PHYSICAL REVIEW LETTERS, 2013, 111 (26)
[9]   A biased intruder in a dense quiescent medium: looking beyond the force-velocity relation [J].
Benichou, Olivier ;
Illien, Pierre ;
Mejia-Monasterio, Carlos ;
Oshanin, Gleb .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[10]   Scaling Properties of Field-Induced Superdiffusion in Continuous Time Random Walks [J].
Burioni, R. ;
Gradenigo, G. ;
Sarracino, A. ;
Vezzani, A. ;
Vulpiani, A. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (04) :514-520