CANOPY HEIGHT ESTIMATION IN FRENCH GUIANA USING LIDAR ICESAT/GLAS DATA

被引:1
作者
Fayad, Ibrahim [1 ]
Baghdadi, Nicolas [1 ]
Bailly, Jean-Stephane
Barbier, Nicolas
Gond, Valery
El Hajj, Mahmoud
Fabre, Frederic
机构
[1] IRSTEA, UMR TETIS, F-34093 Montpellier 5, France
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
Canopy height; ICESat/GLAS; SRTM DEM; Tropical forest; French Guiana; FOREST HEIGHT;
D O I
10.1109/IGARSS.2014.6946681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the canopy height estimation over French Guiana was analyzed using multiple linear regressions and the Random Forest technique (RF). This analysis was based on LiDAR waveform metrics extracted from the GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR and terrain information derived from the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). Results showed that the use of statistical models based on GLAS waveforms and DEM metrics provides better canopy height estimates in comparison to that obtained by the direct method (RMSE between 3.7 and 4.9 m against 7.9 m with the direct method). The best statistical model is defined as a linear regression of waveform extent, trailing edge extent, and terrain index. Random Forest regressions showed that the waveform extent was the variable that best explained the canopy height. In addition, the estimation of GLAS canopy height by RF using only the waveform extent showed an RMSE of 4.4 m. The best configuration for canopy height estimation using RF used all the metrics: waveform extent, leading edge, trailing edge, and terrain index (RMSE=3.4 m). In our case of low relief area, the use of one or two metrics among the three used in this study in addition to the waveform extent showed a slightly lower precision on the canopy height estimation (RMSE=3.6 m). In conclusion, multiple linear regressions and RF regressions provided similar precision on the canopy height estimation
引用
收藏
页码:1337 / 1340
页数:4
相关论文
共 50 条
[31]   Forest terrain and canopy height estimation using stereo images and spaceborne LiDAR data from GF-7 satellite [J].
Du, Liming ;
Pang, Yong ;
Ni, Wenjian ;
Liang, Xiaojun ;
Li, Zengyuan ;
Suarez, Juan ;
Wei, Wei .
GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (03) :811-821
[32]   Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests [J].
Rajab Pourrahmati, Manizheh ;
Baghdadi, Nicolas ;
Fayad, Ibrahim .
REMOTE SENSING, 2023, 15 (06)
[33]   Estimates of Forest Canopy Height Using a Combination of ICESat-2/ATLAS Data and Stereo-Photogrammetry [J].
Lin, Xiaojuan ;
Xu, Min ;
Cao, Chunxiang ;
Dang, Yongfeng ;
Bashir, Barjeece ;
Xie, Bo ;
Huang, Zhibin .
REMOTE SENSING, 2020, 12 (21) :1-21
[34]   REGIONAL SCALE RAIN-FOREST HEIGHT MAPPING USING REGRESSION-KRIGING OF SPACEBORNE AND AIRBORNE LIDAR DATA: APPLICATION ON FRENCH GUIANA [J].
Fayad, I. ;
Baghdadi, N. ;
Bailly, J. S. ;
Barbier, N. ;
Gond, V. ;
Herault, B. ;
El Hajj, M. ;
Lochard, J. ;
Perrin, J. .
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, :4109-4112
[35]   FOREST CANOPY HEIGHT ESTIMATION AT FOOTPRINT SCALE BASED ON AIRBORNE LIDAR METRIC IN THE HETEROGENEOUS LANDSCAPE [J].
Hu, Kailong ;
Liu, Qingwang .
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, :2855-2858
[36]   Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India [J].
Ghosh, Sujit M. ;
Behera, Mukunda D. ;
Kumar, Subham ;
Das, Pulakesh ;
Prakash, Ambadipudi J. ;
Bhaskaran, Prasad K. ;
Roy, Parth S. ;
Barik, Saroj K. ;
Jeganathan, Chockalingam ;
Srivastava, Prashant K. ;
Behera, Soumit K. .
REMOTE SENSING, 2022, 14 (23)
[37]   A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data [J].
Pourshamsi, Maryam ;
Garcia, Mariano ;
Lavalle, Marco ;
Balzter, Heiko .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) :3453-3463
[38]   Synergistic mapping of urban tree canopy height using ICESat-2 data and GF-2 imagery [J].
Xu, Xiaodi ;
Zhang, Ya ;
Fu, Peng ;
Dang, Chaoya ;
Cai, Bowen ;
Zhuang, Qingwei ;
Shao, Zhenfeng ;
Li, Deren ;
Ding, Qing .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
[39]   Estimation of Forest Structural Attributes Using ICESat/GLAS-Spaceborne Laser Altimetry Data in the Western Ghats Region of India [J].
Indu Indirabai ;
M. V. Harindranathan Nair ;
Jaishanker R. Nair ;
Rama Rao Nidamanuri .
Journal of Geovisualization and Spatial Analysis, 2019, 3
[40]   Estimation of Forest Structural Attributes Using ICESat/GLAS-Spaceborne Laser Altimetry Data in the Western Ghats Region of India [J].
Indirabai, Indu ;
Nair, M. V. Harindranathan ;
Nair, Jaishanker R. ;
Nidamanuri, Rama Rao .
JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2019, 3 (02)