CANOPY HEIGHT ESTIMATION IN FRENCH GUIANA USING LIDAR ICESAT/GLAS DATA

被引:1
作者
Fayad, Ibrahim [1 ]
Baghdadi, Nicolas [1 ]
Bailly, Jean-Stephane
Barbier, Nicolas
Gond, Valery
El Hajj, Mahmoud
Fabre, Frederic
机构
[1] IRSTEA, UMR TETIS, F-34093 Montpellier 5, France
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
Canopy height; ICESat/GLAS; SRTM DEM; Tropical forest; French Guiana; FOREST HEIGHT;
D O I
10.1109/IGARSS.2014.6946681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the canopy height estimation over French Guiana was analyzed using multiple linear regressions and the Random Forest technique (RF). This analysis was based on LiDAR waveform metrics extracted from the GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR and terrain information derived from the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). Results showed that the use of statistical models based on GLAS waveforms and DEM metrics provides better canopy height estimates in comparison to that obtained by the direct method (RMSE between 3.7 and 4.9 m against 7.9 m with the direct method). The best statistical model is defined as a linear regression of waveform extent, trailing edge extent, and terrain index. Random Forest regressions showed that the waveform extent was the variable that best explained the canopy height. In addition, the estimation of GLAS canopy height by RF using only the waveform extent showed an RMSE of 4.4 m. The best configuration for canopy height estimation using RF used all the metrics: waveform extent, leading edge, trailing edge, and terrain index (RMSE=3.4 m). In our case of low relief area, the use of one or two metrics among the three used in this study in addition to the waveform extent showed a slightly lower precision on the canopy height estimation (RMSE=3.6 m). In conclusion, multiple linear regressions and RF regressions provided similar precision on the canopy height estimation
引用
收藏
页码:1337 / 1340
页数:4
相关论文
共 50 条
  • [11] Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape
    Hilbert, Claudia
    Schmullius, Christiane
    REMOTE SENSING, 2012, 4 (08): : 2210 - 2235
  • [12] A novel approach to estimate canopy height using ICESat/GLAS data: A case study in the New Forest National Park, UK
    Iqbal, Irfan Akhtar
    Dash, Jadunandan
    Ullah, Saleem
    Ahmad, Ghayyas
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 : 109 - 118
  • [13] Canopy height mapping in French Guiana using multi-source satellite data and environmental information in a U-Net architecture
    Lahssini, Kamel
    Baghdadi, Nicolas
    le Maire, Guerric
    Fayad, Ibrahim
    Villard, Ludovic
    FRONTIERS IN REMOTE SENSING, 2024, 5
  • [14] Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR Data: Application on French Guiana
    Fayad, Ibrahim
    Baghdadi, Nicolas
    Bailly, Jean-Stephane
    Barbier, Nicolas
    Gond, Valery
    Herault, Bruno
    El Hajj, Mahmoud
    Fabre, Frederic
    Perrin, Jose
    REMOTE SENSING, 2016, 8 (03)
  • [15] Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data
    Popescu, S. C.
    Zhou, T.
    Nelson, R.
    Neuenschwande, A.
    Sheridan, R.
    Narine, L.
    Walsh, K. M.
    REMOTE SENSING OF ENVIRONMENT, 2018, 208 : 154 - 170
  • [16] Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data
    Chi, Hong
    Sun, Guoqing
    Huang, Jinliang
    Li, Rendong
    Ren, Xianyou
    Ni, Wenjian
    Fu, Anmin
    REMOTE SENSING, 2017, 9 (07)
  • [17] Estimation of AGB based on ICESat-GLAS waveform and LPA data
    Cai L.
    Xing Y.
    Yue C.
    Huang J.
    Cui Y.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49
  • [18] Constructing a Finer-Resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR Data and Height Patterns of Natural Forests and Plantations
    Huang, Huabing
    Liu, Caixia
    Wang, Xiaoyi
    REMOTE SENSING, 2019, 11 (15)
  • [19] Mapping Forest Height in Alaska Using GLAS, Landsat Composites, and Airborne LiDAR
    Peterson, Birgit
    Nelson, Kurtis J.
    REMOTE SENSING, 2014, 6 (12): : 12409 - 12426
  • [20] Modeling Canopy Height of Forest-Savanna Mosaics in Togo Using ICESat-2 and GEDI Spaceborne LiDAR and Multisource Satellite Data
    Kombate, Arifou
    Kamga, Guy Armel Fotso
    Goita, Kalifa
    REMOTE SENSING, 2025, 17 (01)