A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals

被引:757
作者
Dong, Angang [1 ,4 ]
Ye, Xingchen [1 ]
Chen, Jun [2 ]
Kang, Yijin [1 ]
Gordon, Thomas [1 ]
Kikkawa, James M. [3 ]
Murray, Christopher B. [1 ,2 ]
机构
[1] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
FEPT NANOPARTICLES; SEMICONDUCTOR NANOCRYSTALS; MAGNETIC-PROPERTIES; PHASE-TRANSFER; OXYGEN; REDUCTION; WATER; PEGYLATION; DIOXIDE; SOLIDS;
D O I
10.1021/ja108948z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to engineer surface properties of nanocrystals (NCs) is important for various applications, as many of the physical and chemical properties of nanoscale materials are strongly affected by the surface chemistry. Here, we report a facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape. Nitrosonium tetrafluoroborate (NOBF4) is used to replace the original organic ligands attached to the NC surface, stabilizing the NCs in various polar, hydrophilic media such as N,N-dimethylformamide for years, with no observed aggregation or precipitation. This approach is applicable to various NCs (metal oxides, metals, semiconductors, and dielectrics) of different sizes and shapes. The hydrophilic NCs obtained can subsequently be further functionalized using a variety of capping molecules, imparting different surface functionalization to NCs depending on the molecules employed. Our work provides a versatile ligand-exchange strategy for NC surface functionalization and represents an important step toward controllably engineering the surface properties of NCs.
引用
收藏
页码:998 / 1006
页数:9
相关论文
共 58 条
[1]   Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles [J].
Bae, Che Jin ;
Angappane, S. ;
Park, J.-G. ;
Lee, Youjin ;
Lee, Jinwoo ;
An, Kwangjin ;
Hyeon, Taeghwan .
APPLIED PHYSICS LETTERS, 2007, 91 (10)
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM [J].
BRUST, M ;
WALKER, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
WHYMAN, R .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) :801-802
[4]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[5]   Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor [J].
Chen, Ou ;
Chen, Xian ;
Yang, Yongan ;
Lynch, Jared ;
Wu, Huimeng ;
Zhuang, Jiaqi ;
Cao, Y. Charles .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) :8638-8641
[6]   Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shonheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3891-3898
[7]   Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface [J].
Dong, Angang ;
Chen, Jun ;
Vora, Patrick M. ;
Kikkawa, James M. ;
Murray, Christopher B. .
NATURE, 2010, 466 (7305) :474-477
[8]   Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles [J].
García-Otero, J ;
Porto, M ;
Rivas, J ;
Bunde, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (01) :167-170
[9]   Highly tunable superparamagnetic colloidal photonic crystals [J].
Ge, Jianping ;
Hu, Yongxing ;
Yin, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (39) :7428-7431
[10]   An FTIR study an the mechanism of the reaction between nitrogen dioxide and propene over acidic mordenites [J].
Gerlach, T ;
Schütze, FW ;
Baerns, M .
JOURNAL OF CATALYSIS, 1999, 185 (01) :131-137