Gibbs and equilibrium measures for elliptic functions

被引:7
作者
Mayer, V [1 ]
Urbanski, M
机构
[1] Univ Lille 1, UFR Math, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1007/s00209-005-0770-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Because of its double periodicity, each elliptic function canonically induces a holomorphic dynamical system on a punctured torus. We introduce on this torus a class of summable potentials. With each such potential associated is the corresponding transfer (Perron-Frobenius-Ruelle) operator. The existence and uniquenss of "Gibbs states" and equilibrium states of these potentials are proved. This is done by a careful analysis of the transfer operator which requires a good control of all inverse branches. As an application a version of Bowen's formula for expanding elliptic maps is obtained.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 10 条
[1]  
Denker M, 1998, FUND MATH, V157, P161
[2]   ON THE EXISTENCE OF CONFORMAL MEASURES [J].
DENKER, M ;
URBANSKI, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (02) :563-587
[3]   ERGODIC-THEORY OF EQUILIBRIUM STATES FOR RATIONAL MAPS [J].
DENKER, M ;
URBANSKI, M .
NONLINEARITY, 1991, 4 (01) :103-134
[4]   Geometry and ergodic theory of non-recurrent elliptic functions [J].
Kotus, J ;
Urbanski, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1) :35-102
[5]   Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions [J].
Kotus, J ;
Urbanski, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :269-275
[6]   Self-similarity of Siegel disks and Hausdorff dimension of Julia sets [J].
McMullen, CT .
ACTA MATHEMATICA, 1998, 180 (02) :247-292
[7]   Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps [J].
McMullen, CT .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (04) :535-593
[8]  
Parry William, 1969, Entropy and generators in ergodic theory
[9]  
PRZYTYCKI F, IN PRESS FRACTALS PL
[10]   INVARIANT MEASURES AND EQUILIBRIUM STATES FOR SOME MAPPINGS WHICH EXPAND DISTANCES [J].
WALTERS, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 236 (FEB) :121-153