A Mollification Regularization Method for the Inverse Source Problem for a Time Fractional Diffusion Equation

被引:8
作者
Le Dinh Long [1 ]
Yong Zhou [2 ,3 ]
Tran Thanh Binh [4 ]
Nguyen Can [5 ]
机构
[1] Thu Dau Mot Univ, Fac Nat Sci, Thu Dau Mot City 820000, Binh Duong Prov, Vietnam
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[5] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City 700000, Vietnam
关键词
time-fractional diffusion equation; inverse problem; ill-posed problem; convergence estimates;
D O I
10.3390/math7111048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a time-fractional diffusion equation for an inverse problem to determine an unknown source term, whereby the input data is obtained at a certain time. In general, the inverse problems are ill-posed in the sense of Hadamard. Therefore, in this study, we propose a mollification regularization method to solve this problem. In the theoretical results, the error estimate between the exact and regularized solutions is given by a priori and a posteriori parameter choice rules. Besides, the proposed regularized methods have been verified by a numerical experiment.
引用
收藏
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 2006, MITTAG LEFFLER FUNCT
[2]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[3]   Finite element multigrid method for multi-term time fractional advection diffusion equations [J].
Bu, Weiping ;
Liu, Xiangtao ;
Tang, Yifa ;
Yang, Jiye .
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
[4]   A fractional diffusion equation to describe Levy flights [J].
Chaves, AS .
PHYSICS LETTERS A, 1998, 239 (1-2) :13-16
[5]   Application of the variational iteration method to inverse heat source problems [J].
Geng, Fazhan ;
Lin, Yingzhen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) :2098-2102
[6]  
Gorenflo R., 2001, MATH FINANC, P171, DOI 10.1007/978-3-0348-8291-017
[7]   Regularized solution of an inverse source problem for a time fractional diffusion equation [J].
Huy Tuan Nguyen ;
Dinh Long Le ;
Van Thinh Nguyen .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (19-20) :8244-8264
[8]  
Kirsch A., 2011, INTRO MATH THEORY IN
[9]   AN INVERSE SOURCE PROBLEM FOR HEAT-EQUATION [J].
MALYSHEV, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (01) :206-218
[10]  
Mathai A.M., 2008, SPECIAL FUNCTIONS AP