Remarks on the derivation of the hydrostatic Euler equations

被引:37
作者
Brenier, Y [1 ]
机构
[1] Univ Nice, CNRS, UMR 6621, F-06108 Nice 2, France
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2003年 / 127卷 / 07期
关键词
Euler equations; modulated energy method; Arnold's stability method;
D O I
10.1016/S0007-4497(03)00024-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The motion of an inviscid incompressible fluid between two horizontal plates is studied in the limit when the plates are infinitesimally close. The convergence of the solutions of the Euler equations to those of their formal 'hydrostatic' limit can be established in the case when the initial velocity field satisfies a local Rayleigh conditions. This result, originally obtained by Grenier through weighted energy estimates based on Arnold's stability analysis of the Euler equations, is proven here by a more straightforward method even closer to Arnold's method. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:585 / 595
页数:11
相关论文
共 15 条
[1]  
[Anonymous], FUNKTS ANAL PRILOZH, DOI 0.1007/BF01086549
[2]  
Arnold V. I., 1998, TOPOLOGICAL METHODS
[3]  
BOILLAT G, 1996, LECT NOTES MATH, V1640
[4]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[5]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[6]  
BRENIER Y, 2002, INCIMPRESSIBLE EULER
[7]  
GOLSE F, 2000, SEM EDP 1999 2000 EC
[8]  
Grenier E, 1999, ESAIM-MATH MODEL NUM, V33, P965
[9]  
JUNGEL A, 2002, CONVERGENCE NONLINEA
[10]  
LIONS PL, 1996, MATH TOPICS FLUID MA, V1