A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality

被引:29
作者
Drineas, Petros [1 ]
Zouzias, Anastasios [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12181 USA
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
基金
美国国家科学基金会;
关键词
Matrix-valued Bernstein bounds; Matrix sparsification; Algorithms; ALGORITHMS;
D O I
10.1016/j.ipl.2011.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a matrix A is an element of R-nxn, we present a simple, element-wise sparsification algorithm that zeroes out all sufficiently small elements of A and then retains some of the remaining elements with probabilities proportional to the square of their magnitudes. We analyze the approximation accuracy of the proposed algorithm using a recent, elegant non-commutative Bernstein inequality, and compare our bounds with all existing (to the best of our knowledge) element-wise matrix sparsification algorithms. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:385 / 389
页数:5
相关论文
共 15 条
  • [1] Fast computation of low-rank matrix approximations
    Achlioptas, Dimitris
    McSherry, Frank
    [J]. JOURNAL OF THE ACM, 2007, 54 (02)
  • [2] [Anonymous], 1985, Matrix Analysis
  • [3] [Anonymous], 2001, Proceedings of the thirty-third annual ACM symposium on Theory of computing STOC, DOI 10.1145/380752.380858
  • [4] Fast algorithms for approximate semidefinite programming using the multiplicative weights update method
    Arora, S
    Hazan, E
    Kale, S
    [J]. 46TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2005, : 339 - 348
  • [5] Arora S, 2006, LECT NOTES COMPUT SC, V4110, P272
  • [6] The Power of Convex Relaxation: Near-Optimal Matrix Completion
    Candes, Emmanuel J.
    Tao, Terence
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) : 2053 - 2080
  • [7] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) : 717 - 772
  • [8] DASPREMONT A, 2009, SUBSAMPLING ALGORITH
  • [9] Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
    Drineas, Petros
    Kannan, Ravi
    Mahoney, Michael W.
    [J]. SIAM JOURNAL ON COMPUTING, 2006, 36 (01) : 132 - 157
  • [10] Gittens A., 2009, ERROR BOUNDS RANDOM