Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces

被引:19
作者
Mukminov, F. Kh. [1 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math Comp Ctr, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
anisotropic parabolic equation; renormalized solution; variable nonlinearity; uniqueness of solution; N-function; ENTROPY SOLUTIONS; EXISTENCE; EQUATION; DECAY;
D O I
10.1070/SM8691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the first mixed problem for a class of anisotropic elliptic-parabolic equations with double variable nonlinearities in a cylindrical domain (0, T) x Omega. The domain Omega subset of R-n can be unbounded. The uniqueness of the renormalized solution is proved using Kruzhkov's method of doubling the variable t. The same result is established for an equation with non-power law nonlinearities.
引用
收藏
页码:1187 / 1206
页数:20
相关论文
共 24 条
[1]   Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent [J].
Alkhutov, Yu. A. ;
Zhikov, V. V. .
SBORNIK MATHEMATICS, 2014, 205 (03) :307-318
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]   Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity [J].
Andriyanova, E. R. ;
Mukminov, F. Kh. .
SBORNIK MATHEMATICS, 2016, 207 (01) :1-40
[4]   ESTIMATES OF DECAY RATE FOR SOLUTION TO PARABOLIC EQUATION WITH NON-POWER NONLINEARITIES [J].
Andriyanova, E. R. .
UFA MATHEMATICAL JOURNAL, 2014, 6 (02) :3-24
[5]  
[Anonymous], 1970, Math. USSR Sb., V123, P228, DOI [DOI 10.1070/SM1970V010N02ABEH002156, 10.1070/SM1970v010n02ABEH002156]
[6]  
[Anonymous], REND MAT APPL 7
[7]   Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity [J].
Antontsev S.N. ;
Shmarev S.I. .
Journal of Mathematical Sciences, 2008, 150 (5) :2289-2301
[8]   DOUBLY NONLINEAR EQUATION [J].
BAMBERGER, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (02) :148-155
[9]   Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data [J].
Bendahmane, M. ;
Wittbold, P. ;
Zimmermann, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (06) :1483-1515
[10]   Renormalised solutions of nonlinear parabolic problems with L1 data:: existence and uniqueness [J].
Blanchard, D ;
Murat, F .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :1137-1152