Single-Handedness Chiral Optical Cavities

被引:55
作者
Voronin, Kirill [1 ]
Taradin, Alexey S. [1 ]
Gorkunov, Maxim, V [2 ]
Baranov, Denis G. [1 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Ctr Photon & 2D Mat, Dolgoprudnyi 141700, Russia
[2] Russian Acad Sci, FSRC Crystallog & Photon, Shubnikov Inst Crystallog, Moscow 119333, Russia
[3] Chalmers Univ Technol, Dept Phys, Gothenburg, Sweden
基金
俄罗斯科学基金会;
关键词
optical cavities; resonances; asymmetry; chirality; handedness; spontaneous emission; CIRCULAR-DICHROISM; ENHANCEMENT; MOLECULES; FIELDS;
D O I
10.1021/acsphotonics.2c00134
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Geometrical chirality is a universal property encountered on very different length scales ranging from geometrical shapes of living organisms to drug and DNA molecules. The interaction of chiral matter with chiral light, that is, an electromagnetic field possessing a certain handedness, underlies our ability to discriminate enantiomers of chiral molecules. In this context, it is often desired to have an optical cavity that efficiently couples to only a specific (right or left) molecular enantiomer and does not couple to the opposite one. Here, we demonstrate a single-handedness chiral optical cavity supporting only an eigenmode of a given handedness and lacking modes having the opposite one. Resonant excitation of the cavity with light of appropriate handedness enables the formation of a chiral standing wave with a uniform chirality density, while the light of opposite handedness does not cause any resonant effects. Furthermore, only chiral emitters of the matching handedness efficiently interact with such a chiral eigenmode, enabling the handedness-selective strength of light-matter coupling. The proposed system expands the set of tools available for investigations of chiral matter and opens the door to studies of a chiral electromagnetic vacuum.
引用
收藏
页码:2652 / 2659
页数:8
相关论文
共 39 条
[1]   Circular dichroism mode splitting and bounds to its enhancement with cavity-plasmon-polaritons [J].
Baranov, Denis G. ;
Munkhbat, Battulga ;
Lank, Nils Odebo ;
Verre, Ruggero ;
Kall, Mikael ;
Shegai, Timur .
NANOPHOTONICS, 2020, 9 (02) :283-293
[2]   Modifying magnetic dipole spontaneous emission with nanophotonic structures [J].
Baranov, Denis G. ;
Savelev, Roman S. ;
Li, Sergey V. ;
Krasnok, Alexander E. ;
Alu, Andrea .
LASER & PHOTONICS REVIEWS, 2017, 11 (03)
[3]  
Barron L. D., 2004, Molecular Light Scattering and Optical Activity, P443
[4]   The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism [J].
Bialynicki-Birula, Iwo ;
Bialynicka-Birula, Zofia .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (05)
[5]   Characterizing optical chirality [J].
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICAL REVIEW A, 2011, 83 (02)
[6]   Spiral galaxies as chiral objects? [J].
Capozziello, S ;
Lattanzi, A .
ASTROPHYSICS AND SPACE SCIENCE, 2006, 301 (1-4) :189-193
[7]   Electromagnetic density of states in complex plasmonic systems [J].
Carminati, R. ;
Caze, A. ;
Cao, D. ;
Peragut, F. ;
Krachmalnicoff, V. ;
Pierrat, R. ;
De Wilde, Y. .
SURFACE SCIENCE REPORTS, 2015, 70 (01) :1-41
[8]   Chiroplasmonic DNA-based nanostructures [J].
Cecconello, Alessandro ;
Besteiro, Lucas V. ;
Govorov, Alexander O. ;
Willner, Itamar .
NATURE REVIEWS MATERIALS, 2017, 2 (09)
[9]   Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures [J].
Davis, T. J. ;
Hendry, E. .
PHYSICAL REVIEW B, 2013, 87 (08)
[10]   Coherent control of light-matter interactions in polarization standing waves [J].
Fang, Xu ;
MacDonald, Kevin F. ;
Plum, Eric ;
Zheludev, Nikolay I. .
SCIENTIFIC REPORTS, 2016, 6