FRACTIONAL p&q-LAPLACIAN PROBLEMS WITH POTENTIALS VANISHING AT INFINITY

被引:25
作者
Isernia, Teresa [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
fractional p&q-Laplacian; vanishing potentials; ground state solution; NONLINEAR SCHRODINGER-EQUATIONS; SIGN-CHANGING SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; GROWTH;
D O I
10.7494/OpMath.2020.40.1.93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of a positive and a negative ground state weak solution for the following class of fractional p&q-Laplacian problems (-Delta)(P)(s)u + (-Delta)(P)(s)u+V(x)(vertical bar u vertical bar(p-2)u +vertical bar i vertical bar(q-2) u) = K(x) f(u) in R-N, where s is an element of(0,1), 1N -> R and K : R-N -> R are continuous, positive functions, allowed for vanishing behavior at infinity, f is a continuous function with quasicritical growth and the leading operator (-Delta)(t)(s), with t is an element of {p, q}, is the fractional t-Laplacian operator.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 44 条
[1]   EXISTENCE, MULTIPLICITY AND CONCENTRATION FOR A CLASS OF FRACTIONAL p&q LAPLACIAN PROBLEMS IN RN [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :2009-2045
[2]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[3]   Existence of solutions for a class of elliptic equations in RN with vanishing potentials [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5555-5568
[4]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
Ambrosio V, 2019, Z ANAL ANWEND, V32, P301
[7]   Concentrating solutions for a class of nonlinear fractional Schrodinger equations in RN [J].
Ambrosio, Vincenzo .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) :1367-1414
[8]   On the multiplicity and concentration for p-fractional Schrodinger equations [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
APPLIED MATHEMATICS LETTERS, 2019, 95 :13-22
[9]  
Ambrosio V, 2019, MINIMAX THEORY APPL, V4, P1
[10]   Sign-Changing Solutions for a Class of Zero Mass Nonlocal Schrodinger Equations [J].
Ambrosio, Vincenzo ;
Figueiredo, Giovany M. ;
Isernia, Teresa ;
Bisci, Giovanni Molica .
ADVANCED NONLINEAR STUDIES, 2019, 19 (01) :113-132