Multi-Modal Emotion Recognition Using Speech Features and Text-Embedding

被引:7
|
作者
Byun, Sung-Woo [1 ]
Kim, Ju-Hee [1 ]
Lee, Seok-Pil [2 ]
机构
[1] SangMyung Univ, Grad Sch, Dept Comp Sci, Seoul 03016, South Korea
[2] SangMyung Univ, Dept Elect Engn, Seoul 03016, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 17期
关键词
speech emotion recognition; emotion recognition; multi-modal emotion recognition;
D O I
10.3390/app11177967
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, intelligent personal assistants, chat-bots and AI speakers are being utilized more broadly as communication interfaces and the demands for more natural interaction measures have increased as well. Humans can express emotions in various ways, such as using voice tones or facial expressions; therefore, multimodal approaches to recognize human emotions have been studied. In this paper, we propose an emotion recognition method to deliver more accuracy by using speech and text data. The strengths of the data are also utilized in this method. We conducted 43 feature vectors such as spectral features, harmonic features and MFCC from speech datasets. In addition, 256 embedding vectors from transcripts using pre-trained Tacotron encoder were extracted. The acoustic feature vectors and embedding vectors were fed into each deep learning model which produced a probability for the predicted output classes. The results show that the proposed model exhibited more accurate performance than in previous research.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multi-modal Attention for Speech Emotion Recognition
    Pan, Zexu
    Luo, Zhaojie
    Yang, Jichen
    Li, Haizhou
    INTERSPEECH 2020, 2020, : 364 - 368
  • [2] Multi-modal emotion recognition using EEG and speech signals
    Wang, Qian
    Wang, Mou
    Yang, Yan
    Zhang, Xiaolei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [3] Contextual and Cross-Modal Interaction for Multi-Modal Speech Emotion Recognition
    Yang, Dingkang
    Huang, Shuai
    Liu, Yang
    Zhang, Lihua
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2093 - 2097
  • [4] Multi-modal Emotion Recognition Based on Speech and Image
    Li, Yongqiang
    He, Qi
    Zhao, Yongping
    Yao, Hongxun
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 844 - 853
  • [5] Multi-modal Correlated Network for emotion recognition in speech
    Ren, Minjie
    Nie, Weizhi
    Liu, Anan
    Su, Yuting
    VISUAL INFORMATICS, 2019, 3 (03) : 150 - 155
  • [6] Multi-Modal Emotion Recognition From Speech and Facial Expression Based on Deep Learning
    Cai, Linqin
    Dong, Jiangong
    Wei, Min
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5726 - 5729
  • [7] EXTRACTING AND RECOGNISING MUSIC FEATURES THROUGH MULTI-MODAL EMOTION RECOGNITION
    Xu, Chi
    MECHATRONIC SYSTEMS AND CONTROL, 2024, 52 (03): : 140 - 146
  • [8] SERVER: Multi-modal Speech Emotion Recognition using Transformer-based and Vision-based Embeddings
    Nhat Truong Pham
    Duc Ngoc Minh Dang
    Bich Ngoc Hong Pham
    Sy Dzung Nguyen
    PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2023, 2023, : 234 - 238
  • [9] Multi-head attention fusion networks for multi-modal speech emotion recognition
    Zhang, Junfeng
    Xing, Lining
    Tan, Zhen
    Wang, Hongsen
    Wang, Kesheng
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 168
  • [10] Multi-modal Emotion Recognition Based on Hypergraph
    Zong L.-L.
    Zhou J.-H.
    Xie Q.-J.
    Zhang X.-C.
    Xu B.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (12): : 2520 - 2534