Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices

被引:185
作者
Deng, Hui [1 ,2 ]
Dong, Dongdong [1 ,2 ]
Qiao, Keke [1 ,2 ]
Bu, Lingling [1 ,2 ]
Li, Bing [1 ,2 ]
Yang, Dun [1 ,2 ]
Wang, Hong-En [3 ]
Cheng, Yibing [1 ,2 ,4 ]
Zhao, Zhixin [1 ,2 ]
Tanga, Jiang [1 ,2 ]
Song, Haisheng [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, WNLO, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[4] Monash Univ, Dept Mat Engn, Melbourne, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
SOLAR-CELLS; LOW-COST; CRYSTALLIZATION; PHOTODIODES; TRANSISTORS;
D O I
10.1039/c4nr06982j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organolead halide perovskites are becoming intriguing materials applied in optoelectronics. In the present work, organolead iodide perovskite (OIP) nanowires (NWs) have been fabricated by a one step self-assembly method. The controllable NW distributions were implemented by a series of facile techniques: monolayer and small diameter NWs were prepared by precursor concentration tuning; NW patterning was achieved via selected area treatment assisted by a mask; NW alignment was implemented by modified evaporation-induced self-assembly (EISA). The synthesized multifunctional NWs were further applied in photodetectors (PDs) and solar cells as application demos. The PD performances have reached 1.32 AW(-1) for responsivity, 2.5 x 10(12) Jones for detectivity and 0.3 ms for response speed, superior to OIP films and other typical inorganic NW based PD performances. An energy conversion efficiency of similar to 2.5% has been obtained for NW film based solar cells. The facile fabrication process, controllable distribution and optoelectronic applications make the OIP NWs promising building blocks for future optoelectronics, especially for low dimensional devices.
引用
收藏
页码:4163 / 4170
页数:8
相关论文
共 40 条
[1]   Semiconductor nanowires: optics and optoelectronics [J].
Agarwal, R. ;
Lieber, C. M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (03) :209-215
[2]   Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications [J].
Baikie, Tom ;
Fang, Yanan ;
Kadro, Jeannette M. ;
Schreyer, Martin ;
Wei, Fengxia ;
Mhaisalkar, Subodh G. ;
Graetzel, Michael ;
White, Tim J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5628-5641
[3]   Nanowire photonic circuit elements [J].
Barrelet, CJ ;
Greytak, AB ;
Lieber, CM .
NANO LETTERS, 2004, 4 (10) :1981-1985
[4]  
Brinker CJ, 1999, ADV MATER, V11, P579, DOI 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.3.CO
[5]  
2-I
[6]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[7]   Onset of heterogeneous crystal nucleation in colloidal suspensions [J].
Cacciuto, A ;
Auer, S ;
Frenkel, D .
NATURE, 2004, 428 (6981) :404-406
[8]   Single-Crystalline p-Type Zn3As2 Nanowires for Field-Effect Transistors and Visible-Light Photodetectors on Rigid and Flexible Substrates [J].
Chen, Gui ;
Liu, Zhe ;
Liang, Bo ;
Yu, Gang ;
Xie, Zhong ;
Huang, Hongtao ;
Liu, Bin ;
Wang, Xianfu ;
Chen, Di ;
Zhu, Ming-Qiang ;
Shen, Guozhen .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (21) :2681-2690
[9]   Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process [J].
Chen, Qi ;
Zhou, Huanping ;
Hong, Ziruo ;
Luo, Song ;
Duan, Hsin-Sheng ;
Wang, Hsin-Hua ;
Liu, Yongsheng ;
Li, Gang ;
Yang, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :622-625
[10]   Contact line deposits in an evaporating drop [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
PHYSICAL REVIEW E, 2000, 62 (01) :756-765