Integrated analysis of a membrane-based process for hydrogen production from ethanol steam reforming

被引:18
作者
Mendes, Diogo [1 ]
Tosti, Silvano [2 ]
Borgognoni, Fabio [2 ]
Mendes, Adelio [1 ]
Madeira, Luis M. [1 ]
机构
[1] Univ Porto, Dept Chem Engn, LEPAE, Fac Engn, P-4200465 Oporto, Portugal
[2] CR ENEA Frascati, Unita Tecn Fus, ENEA, I-00044 Frascati, RM, Italy
关键词
Pd-Ag membranes; Membrane reactors; Ethanol steam reforming; Pure hydrogen; Process design; FUEL-CELL SYSTEM; THERMODYNAMIC ANALYSIS; GENERATING HYDROGEN; REACTORS; OPTIMIZATION; BIOETHANOL;
D O I
10.1016/j.cattod.2010.02.029
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The aim of this work is to investigate the performance and energy efficiency achieved by an integrated system based on two different ethanol fuel processor configurations: a Conventional Reactor (CR) and a Membrane Reactor (MR). The CR-based configuration system consists of an ethanol reformer followed by two water-gas shift reactors operating at high and low temperatures. The final hydrogen purification is carried out by a preferential oxidizer in order to reduce the CO concentration before feeding the polymer electrolyte membrane fuel cell (PEMFC). A multi-tubular MR process using thin Pd-Ag tubes has also been considered, where the water-gas shift reaction and the hydrogen separation take place simultaneously. The analysis showed that the MR process configuration possesses a simpler system design with a minor advantage in terms of energy efficiency (30%) compared with the conventional system (27%). Moreover, a detailed parametric analysis concerning the effects of water-to-ethanol molar ratio, reaction pressure, reformer and MR temperature, sweep-gas molar ratio and MR configuration on the achieved performance (hydrogen yield) and energy efficiency of the system has also been done. The importance of optimizing integrated systems is shown since the optimal operating conditions from a global efficiency analysis point of view are in general distinct when compared with those obtained when focusing on the reformer reactor or individual process units alone. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 42 条
[1]   Applications of catalytic inorganic membrane reactors to refinery products [J].
Armor, JN .
JOURNAL OF MEMBRANE SCIENCE, 1998, 147 (02) :217-233
[2]  
Basile A, 2008, MEMBR SCI TECH SER, V13, P255, DOI 10.1016/S0927-5193(07)13008-4
[3]   An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors [J].
Battersby, Scott ;
Teixeira, Paula Werneck ;
Beltramini, Jorge ;
Duke, Mikel C. ;
Rudolph, Victor ;
da Costa, Joao C. Diniz .
CATALYSIS TODAY, 2006, 116 (01) :12-17
[4]   Thermodynamic analysis and performance of a 1 kW bioethanol processor for a PEMFC operation [J].
Benito, M. ;
Padilla, R. ;
Sanz, J. L. ;
Daza, L. .
JOURNAL OF POWER SOURCES, 2007, 169 (01) :123-130
[5]   An exergetic analysis of membrane unit operations integrated in the ethylene production cycle [J].
Bernardo, P. ;
Barbieri, G. ;
Drioli, E. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2006, 84 (A5) :405-411
[6]   Renewable hydrogen from ethanol by autothermal reforming [J].
Deluga, GA ;
Salge, JR ;
Schmidt, LD ;
Verykios, XE .
SCIENCE, 2004, 303 (5660) :993-997
[7]   Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium [J].
Dittmeyer, R ;
Höllein, V ;
Daub, K .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2001, 173 (1-2) :135-184
[8]  
Dixon AG, 2003, INT J CHEM REACT ENG, V1
[9]   New material needs for hydrocarbon fuel processing: Generating hydrogen for the PEM fuel cell [J].
Farrauto, R ;
Hwang, S ;
Shore, L ;
Ruettinger, W ;
Lampert, J ;
Giroux, T ;
Liu, Y ;
Ilinich, O .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :1-27
[10]   Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems [J].
Francesconi, Javier A. ;
Mussati, Miguel C. ;
Mato, Roberto O. ;
Aguirre, Pio A. .
JOURNAL OF POWER SOURCES, 2007, 167 (01) :151-161