Visual Tracking by Sampling in Part Space

被引:15
作者
Huang, Lianghua [1 ]
Ma, Bo [1 ]
Shen, Jianbing [1 ]
He, Hui [1 ]
Shao, Ling [2 ]
Porikli, Fatih [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[3] Australian Natl Univ, Res Sch Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Visual tracking; part space; sampling; ONLINE OBJECT TRACKING; MODELS;
D O I
10.1109/TIP.2017.2745204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel part-based visual tracking method from the perspective of probability sampling. Specifically, we represent the target by a part space with two online learned probabilities to capture the structure of the target. The proposal distribution memorizes the historical performance of different parts, and it is used for the first round of part selection. The acceptance probability validates the specific tracking stability of each part in a frame, and it determines whether to accept its vote or to reject it. By doing this, we transform the complex online part selection problem into a probability learning one, which is easier to tackle. The observation model of each part is constructed by an improved supervised descent method and is learned in an incremental manner. Experimental results on two benchmarks demonstrate the competitive performance of our tracker against state-of-the-art methods.
引用
收藏
页码:5800 / 5810
页数:11
相关论文
共 49 条
  • [1] Azizpour H, 2012, LECT NOTES COMPUT SC, V7572, P836, DOI 10.1007/978-3-642-33718-5_60
  • [2] Robust Tracking-by-Detection using a Detector Confidence Particle Filter
    Breitenstein, Michael D.
    Reichlin, Fabian
    Leibe, Bastian
    Koller-Meier, Esther
    Van Gool, Luc
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1515 - 1522
  • [3] Daneshyar MA, 2015, P BRIT MACH VIS C, P1
  • [4] Occlusion-Aware Real-Time Object Tracking
    Dong, Xingping
    Shen, Jianbing
    Yu, Dajiang
    Wang, Wenguan
    Liu, Jianhong
    Huang, Hua
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (04) : 763 - 771
  • [5] Object Detection with Discriminatively Trained Part-Based Models
    Felzenszwalb, Pedro F.
    Girshick, Ross B.
    McAllester, David
    Ramanan, Deva
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1627 - 1645
  • [6] Cascade Object Detection with Deformable Part Models
    Felzenszwalb, Pedro F.
    Girshick, Ross B.
    McAllester, David
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2241 - 2248
  • [7] Gao J, 2014, LECT NOTES COMPUT SC, V8691, P188, DOI 10.1007/978-3-319-10578-9_13
  • [8] Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251
  • [9] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [10] Exploiting the Circulant Structure of Tracking-by-Detection with Kernels
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 702 - 715