Very weak solutions for Poisson-Nernst-Planck system

被引:4
|
作者
Hineman, Jay L. [1 ]
Ryham, Rolf J. [1 ]
机构
[1] Fordham Univ, Dept Math, Bronx, NY 10458 USA
关键词
Poisson-Nernst-Planck; Drift-diffusion-Poisson; Stationary diffuse charge; ELLIPTIC-EQUATIONS; TIME BEHAVIOR; EXISTENCE; DISTANCE; RESPECT; FLUIDS;
D O I
10.1016/j.na.2014.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a notion of very weak solution for the Poisson-Nernst-Planck system. The stationary system possesses a local monotonicity formula. Iterative application of the formula reveals improvement in estimates for ion density and potential, and leads to a local boundedness result. Local boundedness extends to steady-state systems for multiple ions and variable coefficients. The formulation applies to the related Keller-Segel system where stationary very weak solutions in two dimensions are regular. Examples illustrate how structure influences this regularity in higher dimensions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 24
页数:13
相关论文
共 50 条
  • [41] Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions
    Gavish, Nir
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 368 : 50 - 65
  • [42] Near- and far-field expansions for stationary solutions of Poisson-Nernst-Planck equations
    Lyu, Jhih-Hong
    Lee, Chiun-Chang
    Lin, Tai-Chia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10837 - 10860
  • [43] A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids
    Mirzadeh, Mohammad
    Gibou, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 633 - 653
  • [44] Solution of the Poisson-Nernst-Planck equations in the cell-substrate interface
    Pabst, M.
    Wrobel, G.
    Ingebrandt, S.
    Sommerhage, F.
    Offenhaeusser, A.
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (01): : 1 - 8
  • [45] Second-order Poisson-Nernst-Planck solver for ion transport
    Zheng, Qiong
    Chen, Duan
    Wei, Guo-Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) : 5239 - 5262
  • [46] Poisson-Nernst-Planck equations with high-order steric effects
    Gavish, Nir
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 411
  • [47] A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow
    Liu, Weishi
    Xu, Hongguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1192 - 1228
  • [48] A study of mutations of ompF porin using Poisson-Nernst-Planck theory
    van der Straaten, TA
    Tang, JM
    Eisenberg, RS
    Ravaioli, U
    Aluru, N
    Varma, S
    Jakobsson, E
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 207A - 207A
  • [49] Modified Poisson-Nernst-Planck theory for ion transport in polymeric electrolytes
    van Soestbergen, M.
    Biesheuvel, P. M.
    Rongen, R. T. H.
    Ernst, L. J.
    Zhang, G. Q.
    JOURNAL OF ELECTROSTATICS, 2008, 66 (11-12) : 567 - 573
  • [50] Continuum simulations of acetylcholine consumption by acetylcholinesterase: A Poisson-Nernst-Planck approach
    Zhou, Y. C.
    Lu, Benzhuo
    Huber, Gary A.
    Holst, Michael J.
    McCammon, J. Andrew
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (02): : 270 - 275