Very weak solutions for Poisson-Nernst-Planck system

被引:4
|
作者
Hineman, Jay L. [1 ]
Ryham, Rolf J. [1 ]
机构
[1] Fordham Univ, Dept Math, Bronx, NY 10458 USA
关键词
Poisson-Nernst-Planck; Drift-diffusion-Poisson; Stationary diffuse charge; ELLIPTIC-EQUATIONS; TIME BEHAVIOR; EXISTENCE; DISTANCE; RESPECT; FLUIDS;
D O I
10.1016/j.na.2014.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a notion of very weak solution for the Poisson-Nernst-Planck system. The stationary system possesses a local monotonicity formula. Iterative application of the formula reveals improvement in estimates for ion density and potential, and leads to a local boundedness result. Local boundedness extends to steady-state systems for multiple ions and variable coefficients. The formulation applies to the related Keller-Segel system where stationary very weak solutions in two dimensions are regular. Examples illustrate how structure influences this regularity in higher dimensions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 24
页数:13
相关论文
共 50 条
  • [31] Three dimensional Poisson-Nernst-Planck theory of open channels
    Hollerbach, U
    Chen, D
    Nonner, W
    Eisenberg, B
    BIOPHYSICAL JOURNAL, 1999, 76 (01) : A205 - A205
  • [32] An energy-preserving discretization for the Poisson-Nernst-Planck equations
    Flavell, Allen
    Kabre, Julienne
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (02) : 431 - 441
  • [33] A dynamic mass transport method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [34] A WASSERSTEIN GRADIENT FLOW APPROACH TO POISSON-NERNST-PLANCK EQUATIONS
    Kinderlehrer, David
    Monsaingeon, Leonard
    Xu, Xiang
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 137 - 164
  • [35] Reliability of Poisson-Nernst-Planck Anomalous Models for Impedance Spectroscopy
    Lenzi, E. K.
    Evangelista, L. R.
    Taghizadeh, L.
    Pasterk, D.
    Zola, R. S.
    Sandev, T.
    Heitzinger, C.
    Petreska, I
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (37): : 7885 - 7892
  • [36] The model reduction of the Vlasov-Poisson-Fokker-Planck system to the Poisson-Nernst-Planck system via the Deep Neural Network Approach
    Lee, Jae Yong
    Jang, Jin Woo
    Hwang, Hyung Ju
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 1803 - 1846
  • [37] A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson-Nernst-Planck System
    He, Dongdong
    Pan, Kejia
    Yue, Xiaoqiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 436 - 458
  • [38] Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System
    Abaid, Nicole
    Eisenberg, Robert S.
    Liu, Weishi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04): : 1507 - 1526
  • [39] Endpoint bilinear estimates and applications to the two-dimensional Poisson-Nernst-Planck system
    Deng, Chao
    Li, Congming
    NONLINEARITY, 2013, 26 (11) : 2993 - 3009
  • [40] Measurement of the impedance of aqueous solutions of KCl: An analysis using an extension of the Poisson-Nernst-Planck model
    Duarte, A. R.
    Batalioto, F.
    Barbero, G.
    Figueiredo Neto, A. M.
    APPLIED PHYSICS LETTERS, 2014, 105 (02)