We formulate a notion of very weak solution for the Poisson-Nernst-Planck system. The stationary system possesses a local monotonicity formula. Iterative application of the formula reveals improvement in estimates for ion density and potential, and leads to a local boundedness result. Local boundedness extends to steady-state systems for multiple ions and variable coefficients. The formulation applies to the related Keller-Segel system where stationary very weak solutions in two dimensions are regular. Examples illustrate how structure influences this regularity in higher dimensions. (C) 2014 Elsevier Ltd. All rights reserved.
机构:
Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R ChinaChinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
He, Dongdong
Pan, Kejia
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaChinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
Pan, Kejia
Yue, Xiaoqiang
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R ChinaChinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
机构:
Jiangsu Normal Univ, Sch Math & Stat, Wuxi, Peoples R China
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USAJiangsu Normal Univ, Sch Math & Stat, Wuxi, Peoples R China
Deng, Chao
Li, Congming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200030, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Wuxi, Peoples R China