Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

被引:133
作者
Chandra, Rohitash [1 ]
Goyal, Shaurya [2 ]
Gupta, Rishabh [3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Indian Inst Technol, Dept Geol & Geophys, Kharagpur 721302, W Bengal, India
关键词
Time series analysis; Predictive models; Forecasting; Deep learning; Neural networks; Biological system modeling; Biological neural networks; Recurrent neural networks; LSTM networks; convolutional neural networks; deep learning; time series prediction; RECURRENT NEURAL-NETWORKS; STEP-AHEAD PREDICTION; AR METHODS; STRATEGIES; REGRESSION; AUTOMATA; SYSTEMS; CHAOS;
D O I
10.1109/ACCESS.2021.3085085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time series prediction with neural networks has been the focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it is important to evaluate their strengths and weaknesses. In this paper, we present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction. The deep learning methods comprise simple recurrent neural networks, long short-term memory (LSTM) networks, bidirectional LSTM networks, encoder-decoder LSTM networks, and convolutional neural networks. We provide a further comparison with simple neural networks that use stochastic gradient descent and adaptive moment estimation (Adam) for training. We focus on univariate time series for multi-step-ahead prediction from benchmark time-series datasets and provide a further comparison of the results with related methods from the literature. The results show that the bidirectional and encoder-decoder LSTM network provides the best performance in accuracy for the given time series problems.
引用
收藏
页码:83105 / 83123
页数:19
相关论文
共 102 条
[1]   The Landlab v1.0 OverlandFlow component: a Python']Python tool for computing shallow-water flow across watersheds [J].
Adams, Jordan M. ;
Gasparini, Nicole M. ;
Hobley, Daniel E. J. ;
Tucker, Gregory E. ;
Hutton, Eric W. H. ;
Nudurupati, Sai S. ;
Istanbulluoglu, Erkan .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (04) :1645-1663
[2]   An Empirical Comparison of Machine Learning Models for Time Series Forecasting [J].
Ahmed, Nesreen K. ;
Atiya, Amir F. ;
El Gayar, Neamat ;
El-Shishiny, Hisham .
ECONOMETRIC REVIEWS, 2010, 29 (5-6) :594-621
[3]  
Amarasinghe K, 2017, PROC IEEE INT SYMP, P1483, DOI 10.1109/ISIE.2017.8001465
[4]  
[Anonymous], 2014, P SSST 8 8 WORKSH SY
[5]  
[Anonymous], 2002, 9emes rencontres internationales: Approches Connexionnistes en Sciences
[6]   Multi-step-ahead time series prediction using multiple-output support vector regression [J].
Bao, Yukun ;
Xiong, Tao ;
Hu, Zhongyi .
NEUROCOMPUTING, 2014, 129 :482-493
[7]   A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting [J].
Ben Taieb, Souhaib ;
Atiya, Amir F. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (01) :62-76
[8]   A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition [J].
Ben Taieb, Souhaib ;
Bontempi, Gianluca ;
Atiya, Amir F. ;
Sorjamaa, Antti .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (08) :7067-7083
[9]   Multiple-output modeling for multi-step-ahead time series forecasting [J].
Ben Taieb, Souhaib ;
Sorjamaa, Antti ;
Bontempi, Gianluca .
NEUROCOMPUTING, 2010, 73 (10-12) :1950-1957
[10]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166