Statistical equilibrium solutions of the shallow water equations

被引:15
作者
Weichman, PB
Petrich, DM
机构
[1] Blackhawk Geometr, Golden, CO 80401 USA
[2] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.86.1761
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A statistical method for calculating equilibrium solutions of the shallow water equations, a model of essentially 2D fluid Row with a free surface, is described. The model contains a competing acoustic turbulent direct energy cascade, and a 2D turbulent inverse energy cascade. It is shown. nonetheless that, just as in the corresponding theory of the inviscid Euler equation, the infinite number of conserved quantities constrains the flow sufficiently to produce nontrivial large-scale vortex structures which are solutions to a set of explicitly derived coupled nonlinear partial differential equations.
引用
收藏
页码:1761 / 1764
页数:4
相关论文
共 9 条
  • [1] KOLMOGOROV-TYPE SPECTRUM FOR THE TURBULENCE OF ACOUSTIC-WAVES IN 2 DIMENSIONS
    BALK, A
    [J]. PHYSICS LETTERS A, 1994, 187 (04) : 302 - 308
  • [2] CHAVANIS PH, PHYSICS0004056
  • [3] CHEN PL, 1996, THESIS CALTECH
  • [4] Holm D. D., 1985, Physics Reports, V123, P1, DOI 10.1016/0370-1573(85)90028-6
  • [5] HOLM DD, COMMUNICATION
  • [6] Regional maximum entropy theory of vortex crystal formation
    Jin, DZ
    Dubin, DHE
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (20) : 4434 - 4437
  • [7] STATISTICAL-MECHANICS, EULER EQUATION, AND JUPITER RED SPOT
    MILLER, J
    WEICHMAN, PB
    CROSS, MC
    [J]. PHYSICAL REVIEW A, 1992, 45 (04): : 2328 - 2359
  • [8] Monin AS, 1971, STAT FLUID MECH, V1
  • [9] ZAKHAROV VE, 1992, KOLMOQOROV SPECTRA T, V1