On experiment design for local approach identification of LPV systems

被引:0
|
作者
Motchon, K. M. D. [1 ]
Rajaoarisoa, L. H. [1 ]
Etienne, L. [1 ]
Lecoeuche, S. [1 ]
机构
[1] Univ Lille, Unite Rech Informat Automat, IMT Lille Douai, F-59000 Lille, France
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Experiment design; Identification; Linear Parameter-Varying systems; A-optimality;
D O I
10.1016/j.ifacol.2018.09.138
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The local approach for the estimation of a Linear Parameter-Varying (LPV) model consists in an interpolation of a finite number of Linear Time-Invariant (LTI) systems called local LTI systems. Each local LTI system is obtained by performing an identification experiment at a fixed constant value of the parameter describing the dynamic variation of the LPV model. This parameter is referred in the literature as scheduling variable and the fixed values of the scheduling variable are simply called operating points or scheduling points. In order to improve the accuracy of the local method for the identification of LPV systems, the choice of the scheduling points and the inputs used at each scheduling point for the identification of the local LTI systems is addressed in this paper. To deal with this problem, an accuracy measure is first introduced. This measure is shown to be a linear combination of the classic A-optimality accuracy measure of the local LTI systems. Using this result, an algorithm is finally proposed to solve the experiment design problem. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 50 条
  • [1] Optimal identification experiment design for LPV systems using the local approach
    Ghosh, Debarghya
    Bombois, Xavier
    Huillery, Julien
    Scorletti, Gerard
    Mercere, Guillaume
    AUTOMATICA, 2018, 87 : 258 - 266
  • [2] A Combined Global and Local Identification Approach for LPV Systems
    Turk, Dora
    Pipeleers, Goele
    Swevers, Jan
    IFAC PAPERSONLINE, 2015, 48 (28): : 184 - 189
  • [3] An LMI approach to the identification and (In)Validation of LPV systems
    Sznaier, M
    Mazzaro, C
    PERSPECTIVES IN ROBUST CONTROL, 2001, 268 : 327 - 346
  • [4] LPV system identification for control using the local approach
    Bombois, X.
    Ghosh, D.
    Scorletti, G.
    Huillery, J.
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (02) : 390 - 410
  • [5] An LMI approach to control oriented identification of LPV systems
    Sznaier, M
    Mazzaro, C
    Inanc, T
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 3682 - 3686
  • [6] Subspace identification of MIMO LPV systems: the PBSID approach
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4516 - 4521
  • [7] Subspace identification of multivariable LPV systems: a novel approach
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    2008 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 2008, : 27 - 32
  • [8] Design of LPV observers for LPV time-delay systems: an algebraic approach
    Briat, C.
    Sename, O.
    Lafay, J. -F.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (09) : 1533 - 1542
  • [9] Detection filter design for LPV systems - a geometric approach
    Bokor, J
    Balas, G
    AUTOMATICA, 2004, 40 (03) : 511 - 518
  • [10] A Factor Graph Approach to Parameter Identification for Affine LPV Systems
    Hoffmann, C.
    Isler, A.
    Rostalski, P.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1910 - 1915