3D VISCOUS INCOMPRESSIBLE FLUID AROUND ONE THIN OBSTACLE

被引:6
作者
Lacave, C. [1 ]
机构
[1] Univ Paris 07, Inst Math Jussieu Paris Rive Gauche, CNRS, UMR 7586, F-75205 Paris 13, France
关键词
Navier-Stokes equations; thin obstacles; removable singularity; FLAT-PLATE; FLOW; CURVE;
D O I
10.1090/S0002-9939-2014-12409-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider Leray solutions of the Navier-Stokes equations in the exterior of one obstacle in 3D and we study the asymptotic behavior of these solutions when the obstacle shrinks to a curve or to a surface. In particular, we will prove that a solid curve has no effect on the motion of a viscous fluid, so it is a removable singularity for these equations.
引用
收藏
页码:2175 / 2191
页数:17
相关论文
共 50 条
[41]   The Global Solvability of 3-D Inhomogeneous Viscous Incompressible Magnetohydrodynamic Equations with Bounded Density [J].
Xu, Fuyi ;
Qiao, Liening ;
Fu, Peng .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (01)
[42]   Application of the Rosenbrock methods to the solution of unsteady 3D incompressible Navier-Stokes equations [J].
Deparis, Simone ;
Deville, Michel O. ;
Menghini, Filippo ;
Pegolotti, Luca ;
Quarteroni, Alfio .
COMPUTERS & FLUIDS, 2019, 179 :112-122
[43]   AN EXPLICIT FEM FOR 3-D VISCOUS INCOMPRESSIBLE FLOWS, WITH A EBE/PCG ITERATIVE ALGORITHM [J].
GULCAT, U .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1995, 4 (1-2) :73-85
[44]   Semi-Discrete Predictor-Multicorrector FEM Algorithms for the 2D/3D Unsteady Incompressible Micropolar Fluid Equations [J].
Bi, Xiaowei ;
Liu, Demin .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024,
[45]   Semi-Discrete Predictor-Multicorrector FEM Algorithms for the 2D/3D Unsteady Incompressible Micropolar Fluid Equations [J].
Bi, Xiaowei ;
Liu, Demin .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (06) :1519-1548
[46]   A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity [J].
Gala, Sadek ;
Ragusa, Maria Alessandra .
ANNALES POLONICI MATHEMATICI, 2016, 116 (03) :217-228
[47]   A regularity criterion for the 3D incompressible magneto-hydrodynamics equations [J].
Xu, Fuyi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) :634-644
[48]   The Liouville theorems for 3D stationary inhomogeneous incompressible MHD equations [J].
Yuan, Baoquan ;
Wang, Feifei .
ANNALES POLONICI MATHEMATICI, 2024, 133 (01) :81-93
[49]   Global solutions to the 3D incompressible nematic liquid crystal system [J].
Liu, Qiao ;
Zhang, Ting ;
Zhao, Jihong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (05) :1519-1547
[50]   Global-in-time strong solvability of the multi-dimensional one-phase Stefan problem for an incompressible viscous fluid [J].
Kusaka, Yoshiaki .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (02) :415-439